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Experimental Evaluation: Workloads

Smallbank: asset transfer scenario
•  6 transactions: 5 update transactions + 1 read-only transaction: 

Workload Parameters Values
Number of users (two accounts per user) 100.000
Probability for picking a modifying transaction (Pw) 95%, 50%, 5%
s-value of Zipf distribution for account picking 0.0 - 2.0

Workload Parameters Values
Number of accounts balances (N) 10.000
Number of hot account balances (HSS) 1%, 2%, 4%
Number of read & written balances per transaction (RW) 4, 8
Probability for picking a hot account for reading (HR) 10%, 20%, 40%
Probability for picking a hot account for writing (HW) 5%, 10%

Custom: 
•  1 highly-configurable transaction
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Figure 8: Average number of successful transactions per second of Fabric and Fabric++ under the Smallbankwork-
load, as de�ned in Table 6.
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Figure 9: Average number of successful transactions per second of Fabric and Fabric++ under 36 di�erent con�gu-
rations, as de�ned in Table 7.We vary the number of read &written balances per transaction (RW), the probability
for picking a hot account for reading (HR) and writing (HW), and the number of hot account balances (HSS).

reordering and early abort contribute to the improvement.
Figure 10 shows the improvement breakdown for the con-
�guration BS=1024, RW=8, HR=40%, HW=10%, HSS=1% in
comparison to standard Fabric. While Fabric achieves only
a throughput of around 100 successful transactions per sec-
ond, activating one of our two optimization techniques alone
improves this to around 150 transactions per second. In com-
parison to that, activating both techniques at the same time
results in the highest throughput of successful transactions
with around 220 transactions per second. This shows nicely
how both techniques work together: Transactions, that are
already early aborted in the simulation phase do not end
up in a block in the ordering phase. As a consequence, only
transactions, that have a realistic chance of being successful,
are considered in the reordering process.

6.6 Scaling Channels and Clients
In all of our previous experiments we used four clients to �re
transactions on a single channel. We now vary the number
of channels, and the number of clients to see the e�ect on
the throughput. We use the con�guration BS=1024, RW=8,
HR=40%, HW=10%, HSS=1% to evaluate the average through-
put of successful transactions for Fabric and Fabric++.
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Figure 10: Breakdown of the individual impact of
our optimizations on the throughput of successful
transactions for the con�guration BS=1024, RW=8,
HR=40%, HW=10%, HSS=1%.

First, we vary the number of channels in Figure 11(a) from
1 to 8. Per channel, we use 2 clients to �re transaction propos-
als. We can see that when going from 1 channel to 4 channels,
the throughput of both Fabric and Fabric++ signi�cantly in-
creases. Obviously, the additional mechanisms of Fabric++
do not harm the scaling with the number of channels. Only
when using 8 channels, the throughput decreases again for

Successful Transactions (Smallbank)



Scaling of Fabric++: Custom Workload
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Number of channels

(a) Varying the number of channels from 1 to 8. Per channel, we
use 2 clients to �re the transaction proposals.
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(b) Varying the number of clients per channel from 1 to 8. All
clients �re their transaction proposals in a single channel.

Figure 11: The impact of the number of channels as
well as the number of clients per channel on the
throughput of successful transactions for the con�g-
uration BS=1024, RW=8, HR=40%, HW=10%, HSS=1%.

both Fabric and Fabric++. This is simply the case because
individual channels start competing for resources. This also
increases the number of failed transactions: Scaling from 1 to
8 channels increases the number of failed transactions from
213 TPS to 837 TPS for Fabric and from 81 TPS to 704 TPS for
Fabric++. Due to the competition for resources, individual
simulations phase take longer and increase the chance of
working on stale data.

After varying the number of channels, let us now vary the
number of clients per channel in Figure 11(b). We test 1, 2, 4,
and 8 clients, where all clients �re their transaction proposals
into a single channel. Here, the picture is a slightly di�erent
to the behavior when scaling channels. The throughput of
Fabric increases very gently with the number of clients, and
we see an improvement from around 60 to 105 successful
transactions per seconds when going from 1 to 8 clients. For
Fabric++, we see the highest throughput with around 205
successful transactions per second already for 2 clients. For
8 clients, the throughput drops by around factor 2 to the
throughput of Fabric, clearly showing that the �ring clients
also compete for resources. This is also visible in an increase
in failed transactions when going from 1 to 8 clients per

channel, which increase from 86 TPS to 928 TPS for Fabric
and from 20 TPS to 841 TPS for Fabric++.

6.7 Hyperledger Caliper
For completeness, let us �nally see how Fabric and Fabric++
perform under a run of the Hyperledger Caliper benchmark-
ing framework. As said, Caliper severely struggles with high
transaction �ring rates, so we cannot use the con�guration of
Table 5 as before. Instead, we �re at a lower rate of 150 trans-
actions per second per client, resulting in 600 transactions
per second in total. As a consequence of this low �ring rate,
we also tune down the block size to 512 transactions. We test
our custom workload with N = 10000, RW = 4, HR = 40%,
HW = 10%, HSS = 1%. Table 8 shows the results.

Table 8: Latency and Throughput as measured by
Caliper for Fabric and Fabric++.

Metric Fabric Fabric++

Max. Latency [seconds] 1.44 1.14
Min. Latency [seconds] 0.26 0.12
Avg. Latency [seconds] 0.47 0.28

Avg. Successful Transactions per second 188 299

Interestingly, Caliper also produces latency numbers ad-
ditionally to the measured throughput of successful trans-
actions. We can see that the average latency of Fabric++ is
almost half the latency of the vanilla Fabric. As less virtu-
ally invalid transactions trash the pipeline in Fabric++, valid
transactions can commit earlier. The run of Caliper also con-
�rms our �ndings on the throughput: Fabric++ signi�cantly
increases the number of successful transactions per second.

7 CONCLUSION
In this work, we identi�ed strong similarities of the transac-
tion pipeline of contemporary blockchain systems at the case
of Hyperledger Fabric and distributed database systems in
general.We analyzed these similarities in detail and exploited
them to transition mature techniques from the context of
database systems to Fabric, namely transaction reordering
to remove serialization con�icts as well as early abort of
transactions, that have no chance to commit. In an extended
experimental evaluation, where we tested Fabric++ and the
vanilla version under the Smallbank benchmark as well as
under a custom workload, we show that Fabric++ is able
to signi�cantly outperform Fabric by up to a factor of 12x
for the number of successful transactions per second. Fur-
ther, we are able to almost half the transaction latency, while
keeping the scaling capabilities of the system intact.
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