
Blurring the Lines
between

Blockchains and Database Systems:
the Case of Hyperledger Fabric

Ankur Sharma*
Felix Martin Schuhknecht

Divya Agrawal
Jens Dittrich

Big Data Analytics Group
Saarland University

bigdata.uni-saarland.de

NodeTransaction

State

Node

State

Node

State

1

NodeTransaction

State

Node

State

Node

State

1

This is a distributed

database system.

Trusted Node

NodeTransaction

State

Node

State

Node

State

1

This is a blockchain

system.

Trusted Node

Malicious
Node

1

NodeTransaction

State

Node

State

Node

State

Trusted Node

Malicious
Node

⟹

1

NodeTransaction

State

Node

State

Node

State

Trusted Node

Malicious
Node

Can we say that the Blockchain Systems
are next-gen Distributed Database Systems?

⟹

1

NodeTransaction

State

Node

State

Node

State

Trusted Node

Malicious
Node

Can we say that the Blockchain Systems
are next-gen Distributed Database Systems?

Not really!

⟹

1

NodeTransaction

State

Node

State

Node

State

Trusted Node

Malicious
Node

Can we say that the Blockchain Systems
are next-gen Distributed Database Systems?

Not really!

⟹

Outdated Transaction
Processing Model

The order-execute model (Bitcoin, Ethereum, …)

Client 1

Client 2

The order-execute model (Bitcoin, Ethereum, …)

Client 1

Client 2

Transaction

Transaction

Ordering
Service

The order-execute model (Bitcoin, Ethereum, …)

Client 1

Client 2

Transaction

Transaction

Ordering
Service

Ordering
Phase

Block

The order-execute model (Bitcoin, Ethereum, …)

Client 1

Client 2

Transaction

Transaction

Ordering
Service

Ordering
Phase

Block

Execution
Phase

Peer A1

Peer A2

Peer B1

Peer B2

append to ledger

append to ledger

append to ledger

The order-execute model (Bitcoin, Ethereum, …)

Client 1

Client 2

Transaction

Transaction

Ordering
Service

Ordering
Phase

Block

Execution
Phase

Peer A1

Peer A2

Peer B1

Peer B2

append to ledger

append to ledger

append to ledger

No Scaling

No Concurrency

The order-execute model (Bitcoin, Ethereum, …)

Client 1

Client 2

Transaction

Transaction

Ordering
Service

Ordering
Phase

Block

Execution
Phase

Peer A1

Peer A2

Peer B1

Peer B2

append to ledger

append to ledger

append to ledger

Well-established properties of database systems since decades!

No Scaling

No Concurrency

The order-execute model (Bitcoin, Ethereum, …)

Client 1

Client 2

Transaction

Transaction

Ordering
Service

Ordering
Phase

Block

Execution
Phase

Peer A1

Peer A2

Peer B1

Peer B2

append to ledger

append to ledger

append to ledger

The order-execute model (Bitcoin, Ethereum, …)

Client 1

Client 2

Transaction

Transaction

Ordering
Service

Ordering
Phase

Block

Execution
Phase

Peer A1

Peer A2

Peer B1

Peer B2

append to ledger

append to ledger

append to ledger

Simulation
Phase

Client 1

Peer A1

Peer B1

Peer A2

Peer B2

Client 2

Endorsement

Endorsement

Proposal

simulate

simulate

simulate

simulate

Proposal

Endorsement

The order-execute model (Bitcoin, Ethereum, …)

Client 1

Client 2

Transaction

Transaction

Ordering
Service

Ordering
Phase

Block

Simulation
Phase

Client 1

Peer A1

Peer B1

Peer A2

Peer B2

Client 2

Endorsement

Endorsement

Proposal

simulate

simulate

simulate

simulate

Proposal

Endorsement

Client 1

Client 2

Transaction

Transaction

Ordering
Service

Ordering
Phase

Block

Simulation
Phase

Client 1

Peer A1

Peer B1

Peer A2

Peer B2

Client 2

Endorsement

Endorsement

Proposal

simulate

simulate

simulate

simulate

Proposal

Endorsement

Validation/Commit
Phase

Peer A1

validate

Peer A2

validate

Peer B1

validate

Peer B2

validate

Peer A1

append to ledger

Peer A2

append to ledger

Peer B1

append to ledger

Peer B2

append to ledger

The Simulate-order-validate-commit model (Fabric)

Client 1

Client 2

Transaction

Transaction

Ordering
Service

Ordering
Phase

Block

Simulation
Phase

Client 1

Peer A1

Peer B1

Peer A2

Peer B2

Client 2

Endorsement

Endorsement

Proposal

simulate

simulate

simulate

simulate

Proposal

Endorsement

Validation/Commit
Phase

Peer A1

validate

Peer A2

validate

Peer B1

validate

Peer B2

validate

Peer A1

append to ledger

Peer A2

append to ledger

Peer B1

append to ledger

Peer B2

append to ledger

Parallelization
of Transaction
Simulation

The Simulate-order-validate-commit model (Fabric)

Client 1

Client 2

Transaction

Transaction

Ordering
Service

Ordering
Phase

Block

Simulation
Phase

Client 1

Peer A1

Peer B1

Peer A2

Peer B2

Client 2

Endorsement

Endorsement

Proposal

simulate

simulate

simulate

simulate

Proposal

Endorsement

Validation/Commit
Phase

Peer A1

validate

Peer A2

validate

Peer B1

validate

Peer B2

validate

Peer A1

append to ledger

Peer A2

append to ledger

Peer B1

append to ledger

Peer B2

append to ledger

Parallelization
of Transaction
Simulation ➞ Scaling!

➞ Concurrency!

The Simulate-order-validate-commit model (Fabric)

Client 1

Client 2

Transaction

Transaction

Ordering
Service

Ordering
Phase

Block

Simulation
Phase

Client 1

Peer A1

Peer B1

Peer A2

Peer B2

Client 2

Endorsement

Endorsement

Proposal

simulate

simulate

simulate

simulate

Proposal

Endorsement

Validation/Commit
Phase

Peer A1

validate

Peer A2

validate

Peer B1

validate

Peer B2

validate

Peer A1

append to ledger

Peer A2

append to ledger

Peer B1

append to ledger

Peer B2

append to ledger

Parallelization
of Transaction
Simulation ➞ Scaling!

➞ Concurrency!

Optimistic CC

The Simulate-order-validate-commit model (Fabric)

Client 1

Client 2

Transaction

Transaction

Ordering
Service

Ordering
Phase

Block

Simulation
Phase

Client 1

Peer A1

Peer B1

Peer A2

Peer B2

Client 2

Endorsement

Endorsement

Proposal

simulate

simulate

simulate

simulate

Proposal

Endorsement

Validation/Commit
Phase

Peer A1

validate

Peer A2

validate

Peer B1

validate

Peer B2

validate

Peer A1

append to ledger

Peer A2

append to ledger

Peer B1

append to ledger

Peer B2

append to ledger

Parallelization
of Transaction
Simulation ➞ Scaling!

➞ Concurrency!

Optimistic CC ➞ Serialization Conflicts!

The Simulate-order-validate-commit model (Fabric)

Client 1

Client 2

Transaction

Transaction

Ordering
Service

Ordering
Phase

Block

Simulation
Phase

Client 1

Peer A1

Peer B1

Peer A2

Peer B2

Client 2

Endorsement

Endorsement

Proposal

simulate

simulate

simulate

simulate

Proposal

Endorsement

Validation/Commit
Phase

Peer A1

validate

Peer A2

validate

Peer B1

validate

Peer B2

validate

Peer A1

append to ledger

Peer A2

append to ledger

Peer B1

append to ledger

Peer B2

append to ledger

Parallelization
of Transaction
Simulation ➞ Scaling!

➞ Concurrency!

Optimistic CC

The Simulate-order-validate-commit model (Fabric)

Serialization Conflicts

A=5
B=3
C=7

Serialization Conflicts

A=5
B=3
C=7

Serialization Conflicts

w(A)=10

r(A)=5, w(B)=8

r(A)=5, w(C)=12

Simulation
Phase

A=5
B=3
C=7

Serialization Conflicts

w(A)=10

r(A)=5, w(B)=8

r(A)=5, w(C)=12

Simulation
Phase

A=5
B=3
C=7

Serialization Conflicts

w(A)=10

r(A)=5, w(B)=8

r(A)=5, w(C)=12

Simulation
Phase

T1 T2 T3

Ordering
Phase

A=5
B=3
C=7

Serialization Conflicts

w(A)=10

r(A)=5, w(B)=8

r(A)=5, w(C)=12

Simulation
Phase

Validation/Commit
Phase

T1 T2 T3

Ordering
Phase

A=5
B=3
C=7

Serialization Conflicts

w(A)=10

r(A)=5, w(B)=8

r(A)=5, w(C)=12

Simulation
Phase

Validation/Commit
Phase

✓

A=10
B=3
C=7

T1 T2 T3

Ordering
Phase

A=5
B=3
C=7

Serialization Conflicts

w(A)=10

r(A)=5, w(B)=8

r(A)=5, w(C)=12

Simulation
Phase

Validation/Commit
Phase

✓

A=10
B=3
C=7

✘ ✘
outdated! outdated!

T1 T2 T3

Ordering
Phase

A=5
B=3
C=7

Serialization Conflicts

w(A)=10

r(A)=5, w(B)=8

r(A)=5, w(C)=12

Simulation
Phase

Validation/Commit
Phase

✓

A=10
B=3
C=7

Commit Rate: 1/3

✘ ✘
outdated! outdated!

T1 T2 T3

Ordering
Phase

A=5
B=3
C=7

Serialization Conflicts

w(A)=10

r(A)=5, w(B)=8

r(A)=5, w(C)=12

Simulation
Phase

T1 T2 T3

Ordering
Phase

Validation/Commit
Phase

A=5
B=3
C=7

Serialization Conflicts

w(A)=10

r(A)=5, w(B)=8

r(A)=5, w(C)=12

Simulation
Phase

T1T2 T3

Ordering
Phase

Validation/Commit
Phase

reordered

A=5
B=3
C=7

Serialization Conflicts

w(A)=10

r(A)=5, w(B)=8

r(A)=5, w(C)=12

Simulation
Phase

T1T2 T3

Ordering
Phase

Validation/Commit
Phase

✓

A=5
B=8
C=7

reordered

A=5
B=3
C=7

Serialization Conflicts

w(A)=10

r(A)=5, w(B)=8

r(A)=5, w(C)=12

Simulation
Phase

T1T2 T3

Ordering
Phase

Validation/Commit
Phase

✓

A=5
B=8
C=7

✓

A=5
B=8

C=12

reordered

A=5
B=3
C=7

Serialization Conflicts

w(A)=10

r(A)=5, w(B)=8

r(A)=5, w(C)=12

Simulation
Phase

T1T2 T3

Ordering
Phase

Validation/Commit
Phase

✓

A=5
B=8
C=7

✓

A=5
B=8

C=12

✓

A=10
B=8

C=12

reordered

A=5
B=3
C=7

Serialization Conflicts

w(A)=10

r(A)=5, w(B)=8

r(A)=5, w(C)=12

Simulation
Phase

T1T2 T3

Ordering
Phase

Validation/Commit
Phase

✓

A=5
B=8
C=7

✓

A=5
B=8

C=12

✓

A=10
B=8

C=12

Commit Rate: 3/3

reordered

Fabric++: Reordering of Transactions

1. build conflict graph:

Fabric++: Reordering of Transactions

1. build conflict graph:

Fabric++: Reordering of Transactions

Ti Tj
Ti Tjwrites a key, which is read by

T0

T1

T3

T2

T4

T5

1. build conflict graph:

Fabric++: Reordering of Transactions

Ti Tj
Ti Tjwrites a key, which is read by

2. compute strongly connected subgraphs:

Fabric++: Reordering of Transactions

Ti Tj
Ti Tjwrites a key, which is read by

T0

T1

T3

T2

T4

T5

3. compute cycle-free conflicts graph:

Fabric++: Reordering of Transactions

Ti Tj
Ti Tjwrites a key, which is read by

T0

T1

T3

T2

T4

T5

3. compute cycle-free conflicts graph:

Fabric++: Reordering of Transactions

Ti Tj
Ti Tjwrites a key, which is read by

T0

T1

T3

T2

T4

T5

4. compute schedule: T0 T2and abortedT5 T1 T3 T4⇒ ⇒ ⇒

Fabric: Lock-based Concurrency Control

Fabric: Lock-based Concurrency Control
T6T5T4T3

Simulation

Validation/Commit

Current
State

X=(70,T4)
Y=(80,T3)

Fabric: Lock-based Concurrency Control
T6T5T4T3

Simulation

Validation/Commit

Current
State

X=(70,T4)
Y=(80,T3)

Fabric: Lock-based Concurrency Control

r(X)=
(70,T4)

r(Y)=
(80,T3)

T6T5T4T3

Simulation

Validation/Commit

Current
State

X=(70,T4)
Y=(80,T3)

Fabric: Lock-based Concurrency Control

r(X)=
(70,T4)

r(Y)=
(80,T3)

T6T5T4T3

X=(50,T5)
Y=(80,T3)

X=(50,T5)
Y=(100,T5)

w(X)=
(50,T5)

w(Y)=
(100,T5)

✓✓

Simulation

Validation/Commit

Current
State

X=(70,T4)
Y=(80,T3)

Fabric: Lock-based Concurrency Control

r(X)=
(50,T5)

⚡
(70,T4)

✘

r(X)=
(70,T4)

r(Y)=
(80,T3)

T6T5T4T3

X=(50,T5)
Y=(80,T3)

X=(50,T5)
Y=(100,T5)

w(X)=
(50,T5)

w(Y)=
(100,T5)

✓✓

Simulation

Validation/Commit

Current
State

X=(70,T4)
Y=(80,T3)

Fabric: Lock-based Concurrency Control

r(X)=
(50,T5)

⚡
(70,T4)

✘

r(X)=
(70,T4)

r(Y)=
(80,T3)

T6T5T4T3

r(Y)=
(100,T5)

⚡
(80,T3)

✘

X=(50,T5)
Y=(80,T3)

X=(50,T5)
Y=(100,T5)

w(X)=
(50,T5)

w(Y)=
(100,T5)

✓✓

Simulation

Validation/Commit

Current
State

X=(70,T4)
Y=(80,T3)

Fabric++: Multi-version Concurrency Control

Simulation

Validation/Commit

Current
State

X=(70,T4)
Y=(80,T3)

Fabric++: Multi-version Concurrency Control

version
at

start
T4

Simulation

Validation/Commit

Current
State

X=(70,T4)
Y=(80,T3)

Fabric++: Multi-version Concurrency Control

version
at

start
T4

r(X)=
(70,T4)

T4

=

Simulation

Validation/Commit

Current
State

X=(70,T4)
Y=(80,T3)

Fabric++: Multi-version Concurrency Control

version
at

start
T4

X=(50,T5)
Y=(80,T3)

X=(50,T5)
Y=(100,T5)

✓ ✓

w(X)=
(50,T5)

w(Y)=
(100,T5)

r(X)=
(70,T4)

T4

=

Simulation

Validation/Commit

Current
State

X=(70,T4)
Y=(80,T3)

Fabric++: Multi-version Concurrency Control

version
at

start
T4

r(Y)=
(100,T5)

⚡
T4

X=(50,T5)
Y=(80,T3)

X=(50,T5)
Y=(100,T5)

✓ ✓

w(X)=
(50,T5)

w(Y)=
(100,T5)

r(X)=
(70,T4)

T4

=

Simulation

Validation/Commit

Current
State

X=(70,T4)
Y=(80,T3)

Fabric++: Multi-version Concurrency Control

version
at

start
T4

r(Y)=
(100,T5)

⚡
T4 abort

X=(50,T5)
Y=(80,T3)

X=(50,T5)
Y=(100,T5)

✓ ✓

w(X)=
(50,T5)

w(Y)=
(100,T5)

r(X)=
(70,T4)

T4

=

Simulation

Validation/Commit

Current
State

X=(70,T4)
Y=(80,T3)

Fabric++: Multi-version Concurrency Control

version
at

start
T4

r(Y)=
(100,T5)

⚡
T4 abort

X=(50,T5)
Y=(80,T3)

X=(50,T5)
Y=(100,T5)

✓ ✓

w(X)=
(50,T5)

w(Y)=
(100,T5)

r(X)=
(70,T4)

T4

=

T6T5T4T3

Block
Peer A1

append to ledger

Peer A2

append to ledger

Peer B1

append to ledger

Peer B2

append to ledger

Validation/Commit
Phase

Peer A1

validate

Peer A2

validate

Peer B1

validate

Peer B2

validate

Ordering
Phase

Ordering
Service

Transaction

Transaction

Simulation
Phase

Client 1

Peer A1

Peer B1

Peer A2

Peer B2

Client 2

Endorsement

Endorsement

Proposal

simulate

simulate

simulate

simulate

Proposal

Endorsement

Early Abort of Transactions

Block
Peer A1

append to ledger

Peer A2

append to ledger

Peer B1

append to ledger

Peer B2

append to ledger

Validation/Commit
Phase

Peer A1

validate

Peer A2

validate

Peer B1

validate

Peer B2

validate

Ordering
Phase

Ordering
Service

Transaction

Transaction

Simulation
Phase

Client 1

Peer A1

Peer B1

Peer A2

Peer B2

Client 2

Endorsement

Endorsement

Proposal

simulate

simulate

simulate

simulate

Proposal

Endorsement

Early Abort of Transactions

transaction
abort

Block
Peer A1

append to ledger

Peer A2

append to ledger

Peer B1

append to ledger

Peer B2

append to ledger

Validation/Commit
Phase

Peer A1

validate

Peer A2

validate

Peer B1

validate

Peer B2

validate

Ordering
Phase

Ordering
Service

Transaction

Transaction

Simulation
Phase

Client 1

Peer A1

Peer B1

Peer A2

Peer B2

Client 2

Endorsement

Endorsement

Proposal

simulate

simulate

simulate

simulate

Proposal

Endorsement

Early Abort of Transactions

transaction
abort

Ordering
Service

with
Reordering

Block
Peer A1

append to ledger

Peer A2

append to ledger

Peer B1

append to ledger

Peer B2

append to ledger

Validation/Commit
Phase

Peer A1

validate

Peer A2

validate

Peer B1

validate

Peer B2

validate

Ordering
Phase

Ordering
Service

Transaction

Transaction

Simulation
Phase

Client 1

Peer A1

Peer B1

Peer A2

Peer B2

Client 2

Endorsement

Endorsement

Proposal

simulate

simulate

simulate

simulate

Proposal

Endorsement

Early Abort of Transactions

transaction
abort

early
transaction

abort

Ordering
Service

with
Reordering

Block
Peer A1

append to ledger

Peer A2

append to ledger

Peer B1

append to ledger

Peer B2

append to ledger

Validation/Commit
Phase

Peer A1

validate

Peer A2

validate

Peer B1

validate

Peer B2

validate

Ordering
Phase

Ordering
Service

Transaction

Transaction

Simulation
Phase

Client 1

Peer A1

Peer B1

Peer A2

Peer B2

Client 2

Endorsement

Endorsement

Proposal

simulate

simulate

simulate

simulate

Proposal

Endorsement

Early Abort of Transactions

transaction
abort

early
transaction

abortearly transaction abort
already during simulation?

Ordering
Service

with
Reordering

Experimental Evaluation: Setup

Peer

Peer

Peer

Peer

Ordering
Service

Client

2 x Quad-Core Intel Xeon
48GB RAM

Gigabit Ethernet

Rack

Experimental Evaluation: Workloads

Experimental Evaluation: Workloads

Smallbank: asset transfer scenario
• 6 transactions: 5 update transactions + 1 read-only transaction:

Workload Parameters Values
Number of users (two accounts per user) 100.000
Probability for picking a modifying transaction (Pw) 95%, 50%, 5%
s-value of Zipf distribution for account picking 0.0 - 2.0

Experimental Evaluation: Workloads

Smallbank: asset transfer scenario
• 6 transactions: 5 update transactions + 1 read-only transaction:

Workload Parameters Values
Number of users (two accounts per user) 100.000
Probability for picking a modifying transaction (Pw) 95%, 50%, 5%
s-value of Zipf distribution for account picking 0.0 - 2.0

Workload Parameters Values
Number of accounts balances (N) 10.000
Number of hot account balances (HSS) 1%, 2%, 4%
Number of read & written balances per transaction (RW) 4, 8
Probability for picking a hot account for reading (HR) 10%, 20%, 40%
Probability for picking a hot account for writing (HW) 5%, 10%

Custom:
• 1 highly-configurable transaction

Successful Transactions (Smallbank)

Smallbank balanced workload (Pw = 50%)

H
SS

: 1
%

H
SS

: 2
%

H
SS

: 4
%

HW: 5% HW: 10% HW: 10% HW: 10%HW: 5% HW: 5%

HR: 10% HR: 20% HR: 40%

RW: 4

H
SS

: 1
%

H
SS

: 2
%

H
SS

: 4
%

H
SS

: 1
%

H
SS

: 2
%

H
SS

: 4
%

H
SS

: 1
%

H
SS

: 2
%

H
SS

: 4
%

H
SS

: 1
%

H
SS

: 2
%

H
SS

: 4
%

H
SS

: 1
%

H
SS

: 2
%

H
SS

: 4
%

H
SS

: 1
%

H
SS

: 2
%

H
SS

: 4
%

H
SS

: 1
%

H
SS

: 2
%

H
SS

: 4
%

H
SS

: 1
%

H
SS

: 2
%

H
SS

: 4
%

H
SS

: 1
%

H
SS

: 2
%

H
SS

: 4
%

H
SS

: 1
%

H
SS

: 2
%

H
SS

: 4
%

H
SS

: 1
%

H
SS

: 2
%

H
SS

: 4
%

HW: 5% HW: 10% HW: 10% HW: 10%HW: 5% HW: 5%

HR: 10% HR: 20% HR: 40%

RW: 8

Fabric Fabric++ (reordering & early abort)

A
vg

. S
uc

ce
ss

fu
l T

ra
ns

ac
tio

ns
 p

er
 s

ec
on

d

18 different configurations of workload

Successful Transactions (Custom Workload)

Su
cc

es
sf

ul
 T

ra
ns

ac
tio

ns
 p

er
 s

ec
on

d

0

50

100

150

200

250

Fabric
Fabric++ (only reordering)
Fabric++ (only early abort)
Fabric++ (reordering & early abort)

Optimization Breakdown

Custom Workload:
BS=1024, RW=8, HR=40%, HW=10%, HSS=1%

Conclusion

Fabric

Conclusion

MVCCFabric

Transaction
Reordering

Fabric++*

Conclusion

MVCCTransaction
Reordering

* Open Source. Available at tiny.cc/fabricpp

http://tiny.cc/fabricpp

Fabric++*

Conclusion

MVCCTransaction
Reordering

Up to 12x Improvement in Successful
Transaction’s Throughput

* Open Source. Available at tiny.cc/fabricpp

http://tiny.cc/fabricpp

Fabric++*

Conclusion

MVCCTransaction
Reordering

Up to 12x Improvement in Successful
Transaction’s Throughput

Up to 50% Less
Latency

* Open Source. Available at tiny.cc/fabricpp

http://tiny.cc/fabricpp

Summary

Backup Slides

(a) Pw = 5% (read-heavy) (b) Pw = 50% (balanced) (c) Pw = 95% (write-heavy)

Figure 8: Average number of successful transactions per second of Fabric and Fabric++ under the Smallbankwork-
load, as de�ned in Table 6.

H
SS

: 1
%

H
SS

: 2
%

H
SS

: 4
%

HW: 5% HW: 10% HW: 10% HW: 10%HW: 5% HW: 5%

HR: 10% HR: 20% HR: 40%

RW: 4

H
SS

: 1
%

H
SS

: 2
%

H
SS

: 4
%

H
SS

: 1
%

H
SS

: 2
%

H
SS

: 4
%

H
SS

: 1
%

H
SS

: 2
%

H
SS

: 4
%

H
SS

: 1
%

H
SS

: 2
%

H
SS

: 4
%

H
SS

: 1
%

H
SS

: 2
%

H
SS

: 4
%

H
SS

: 1
%

H
SS

: 2
%

H
SS

: 4
%

H
SS

: 1
%

H
SS

: 2
%

H
SS

: 4
%

H
SS

: 1
%

H
SS

: 2
%

H
SS

: 4
%

H
SS

: 1
%

H
SS

: 2
%

H
SS

: 4
%

H
SS

: 1
%

H
SS

: 2
%

H
SS

: 4
%

H
SS

: 1
%

H
SS

: 2
%

H
SS

: 4
%

HW: 5% HW: 10% HW: 10% HW: 10%HW: 5% HW: 5%

HR: 10% HR: 20% HR: 40%

RW: 8

Fabric Fabric++ (reordering & early abort)

A
vg

. S
uc

ce
ss

fu
l T

ra
ns

ac
tio

ns
 p

er
 s

ec
on

d

Figure 9: Average number of successful transactions per second of Fabric and Fabric++ under 36 di�erent con�gu-
rations, as de�ned in Table 7.We vary the number of read &written balances per transaction (RW), the probability
for picking a hot account for reading (HR) and writing (HW), and the number of hot account balances (HSS).

reordering and early abort contribute to the improvement.
Figure 10 shows the improvement breakdown for the con-
�guration BS=1024, RW=8, HR=40%, HW=10%, HSS=1% in
comparison to standard Fabric. While Fabric achieves only
a throughput of around 100 successful transactions per sec-
ond, activating one of our two optimization techniques alone
improves this to around 150 transactions per second. In com-
parison to that, activating both techniques at the same time
results in the highest throughput of successful transactions
with around 220 transactions per second. This shows nicely
how both techniques work together: Transactions, that are
already early aborted in the simulation phase do not end
up in a block in the ordering phase. As a consequence, only
transactions, that have a realistic chance of being successful,
are considered in the reordering process.

6.6 Scaling Channels and Clients
In all of our previous experiments we used four clients to �re
transactions on a single channel. We now vary the number
of channels, and the number of clients to see the e�ect on
the throughput. We use the con�guration BS=1024, RW=8,
HR=40%, HW=10%, HSS=1% to evaluate the average through-
put of successful transactions for Fabric and Fabric++.

Su
cc

es
sf

ul
 T

ra
ns

ac
tio

ns
 p

er
 s

ec
on

d

0

50

100

150

200

250

Fabric
Fabric++ (only reordering)
Fabric++ (only early abort)
Fabric++ (reordering & early abort)

Figure 10: Breakdown of the individual impact of
our optimizations on the throughput of successful
transactions for the con�guration BS=1024, RW=8,
HR=40%, HW=10%, HSS=1%.

First, we vary the number of channels in Figure 11(a) from
1 to 8. Per channel, we use 2 clients to �re transaction propos-
als. We can see that when going from 1 channel to 4 channels,
the throughput of both Fabric and Fabric++ signi�cantly in-
creases. Obviously, the additional mechanisms of Fabric++
do not harm the scaling with the number of channels. Only
when using 8 channels, the throughput decreases again for

Successful Transactions (Smallbank)

Scaling of Fabric++: Custom Workload

Su
cc

es
sf

ul
 T

ra
ns

ac
tio

ns
 p

er
 s

ec
on

d
0

100

200

300

400

1 2 4 8

Fabric Fabric++ (reordering & early abort)

Number of channels

(a) Varying the number of channels from 1 to 8. Per channel, we
use 2 clients to �re the transaction proposals.

Su
cc

es
sf

ul
 T

ra
ns

ac
tio

ns
 p

er
 s

ec
on

d

0

50

100

150

200

250

1 2 4 8
Number of clients per channel

(b) Varying the number of clients per channel from 1 to 8. All
clients �re their transaction proposals in a single channel.

Figure 11: The impact of the number of channels as
well as the number of clients per channel on the
throughput of successful transactions for the con�g-
uration BS=1024, RW=8, HR=40%, HW=10%, HSS=1%.

both Fabric and Fabric++. This is simply the case because
individual channels start competing for resources. This also
increases the number of failed transactions: Scaling from 1 to
8 channels increases the number of failed transactions from
213 TPS to 837 TPS for Fabric and from 81 TPS to 704 TPS for
Fabric++. Due to the competition for resources, individual
simulations phase take longer and increase the chance of
working on stale data.

After varying the number of channels, let us now vary the
number of clients per channel in Figure 11(b). We test 1, 2, 4,
and 8 clients, where all clients �re their transaction proposals
into a single channel. Here, the picture is a slightly di�erent
to the behavior when scaling channels. The throughput of
Fabric increases very gently with the number of clients, and
we see an improvement from around 60 to 105 successful
transactions per seconds when going from 1 to 8 clients. For
Fabric++, we see the highest throughput with around 205
successful transactions per second already for 2 clients. For
8 clients, the throughput drops by around factor 2 to the
throughput of Fabric, clearly showing that the �ring clients
also compete for resources. This is also visible in an increase
in failed transactions when going from 1 to 8 clients per

channel, which increase from 86 TPS to 928 TPS for Fabric
and from 20 TPS to 841 TPS for Fabric++.

6.7 Hyperledger Caliper
For completeness, let us �nally see how Fabric and Fabric++
perform under a run of the Hyperledger Caliper benchmark-
ing framework. As said, Caliper severely struggles with high
transaction �ring rates, so we cannot use the con�guration of
Table 5 as before. Instead, we �re at a lower rate of 150 trans-
actions per second per client, resulting in 600 transactions
per second in total. As a consequence of this low �ring rate,
we also tune down the block size to 512 transactions. We test
our custom workload with N = 10000, RW = 4, HR = 40%,
HW = 10%, HSS = 1%. Table 8 shows the results.

Table 8: Latency and Throughput as measured by
Caliper for Fabric and Fabric++.

Metric Fabric Fabric++

Max. Latency [seconds] 1.44 1.14
Min. Latency [seconds] 0.26 0.12
Avg. Latency [seconds] 0.47 0.28

Avg. Successful Transactions per second 188 299

Interestingly, Caliper also produces latency numbers ad-
ditionally to the measured throughput of successful trans-
actions. We can see that the average latency of Fabric++ is
almost half the latency of the vanilla Fabric. As less virtu-
ally invalid transactions trash the pipeline in Fabric++, valid
transactions can commit earlier. The run of Caliper also con-
�rms our �ndings on the throughput: Fabric++ signi�cantly
increases the number of successful transactions per second.

7 CONCLUSION
In this work, we identi�ed strong similarities of the transac-
tion pipeline of contemporary blockchain systems at the case
of Hyperledger Fabric and distributed database systems in
general.We analyzed these similarities in detail and exploited
them to transition mature techniques from the context of
database systems to Fabric, namely transaction reordering
to remove serialization con�icts as well as early abort of
transactions, that have no chance to commit. In an extended
experimental evaluation, where we tested Fabric++ and the
vanilla version under the Smallbank benchmark as well as
under a custom workload, we show that Fabric++ is able
to signi�cantly outperform Fabric by up to a factor of 12x
for the number of successful transactions per second. Fur-
ther, we are able to almost half the transaction latency, while
keeping the scaling capabilities of the system intact.

8 ACKNOWLEDGEMENT
This work was funded by the German Research Foundation
(DFG) via the collaborative research center “Methods and
Tools for Understanding and Controlling Privacy” (SFB 1223).

