
A Critical Analysis of Recursive Model Indexes
Marcel Maltry

Saarland University
Saarland Informatics Campus

marcel.maltry@bigdata.uni-saarland.de

Jens Dittrich
Saarland University

Saarland Informatics Campus
jens.dittrich@bigdata.uni-saarland.de

ABSTRACT
The recursive model index (RMI) has recently been introduced as a
machine-learned replacement for traditional indexes over sorted
data, achieving remarkably fast lookups. Follow-up work focused
on explaining RMI’s performance and automatically configuring
RMIs through enumeration. Unfortunately, configuring RMIs in-
volves setting several hyperparameters, the enumeration of which
is often too time-consuming in practice. Therefore, in this work,
we conduct the first inventor-independent broad analysis of RMIs
with the goal of understanding the impact of each hyperparameter
on performance. In particular, we show that in addition to model
types and layer size, error bounds and search algorithms must be
considered to achieve the best possible performance. Based on our
findings, we develop a simple-to-follow guideline for configuring
RMIs. We evaluate our guideline by comparing the resulting RMIs
with a number of state-of-the-art indexes, both learned and tradi-
tional. We show that our simple guideline is sufficient to achieve
competitive performance with other learned indexes and RMIs
whose configuration was determined using an expensive enumera-
tion procedure. In addition, while carefully reimplementing RMIs,
we are able to improve the build time by 2.5x to 6.3x.

PVLDB Reference Format:
Marcel Maltry and Jens Dittrich. A Critical Analysis of Recursive Model
Indexes. PVLDB, 15(5): 1079 - 1091, 2022.
doi:10.14778/3510397.3510405

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/BigDataAnalyticsGroup/analysis-rmi.

1 INTRODUCTION
Machine learning and artificial intelligence are taking the world by
storm. Research areas that were believed to have been researched to
completion have been revisited with exciting new results, showing
that considerable improvements are still possible if we factor in
wisdom from the machine learning world. Notable examples in-
clude natural language processing and compute vision which were
completely revolutionized in the past decade by variants of deep
learning. In the database world, we witnessed a surge of similar
re-exploration endeavors in the past five years. Notable recent ex-
amples of works in that space include cardinality estimation [11, 29],
auto-tuning [1, 25], and indexing [7, 9, 10, 15, 18]. We believe that

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 15, No. 5 ISSN 2150-8097.
doi:10.14778/3510397.3510405

indexing is the most surprising result of these three areas because
both cardinality estimation and auto-tuning are optimization prob-
lems and thus have a natural proximity to machine learning. The
connection to indexing becomes evident when we examine a special
case of indexing.
Problem Statement. Given a sorted, densely packed array 𝐴 of
keys and a query 𝑄 asking for a particular key 𝑥𝑖 that may or may
not exist in that array, return the array index 𝑖 of that key 𝑥𝑖 .

In other words, we are looking for a function that assigns to each
key its position in the sorted array. Traditionally, this function is
implemented by a suitable algorithm like binary search or a data
structure like a B-tree. In contrast, Kraska et al. [18] observe that
this function can be learned through regression, effectively making
the indexing problem a machine learning task. Based on this obser-
vation, Kraska et al. [18] present the recursive model index (RMI)
as first learned index with remarkable results in terms of lookup
performance. We wanted to understand the performance benefits of
RMIs early on and therefore tried to reproduce the results. However,
we quickly encountered several issues.
Hyperparameter configuration. Configuring RMIs involves set-
ting several hyperparameters. Unfortunately, the exact configura-
tions with which the remarkable results were obtained were not
reported and in some cases even described misleadingly. The use
of neural networks is mentioned frequently throughout the experi-
mental evaluation of the original paper. However, the low model
evaluation times reported in Fig. 4 strongly suggest that none of the
best-performing configurations actually uses neural networks. In
personal communication with the first author in August 2019, we
learned that linear models should be preferred over neural networks
in most cases. In our experience, there is still a misconception in the
community today that RMIs internally use neural networks. Subse-
quent studies [14, 22] involving inventors of the RMI investigated
the performance benefits of learned indexes over traditional indexes.
However, hyperparameter configurations for the reported results
were obtained by a time-consuming enumeration process [23]. As
a result, similar to the original paper [18], the studies neither show
how the choice of hyperparameters affects performance, nor do they
give advice for configuring RMIs in practice besides enumeration.
Closed source. The source code of the original paper was never
made available. A so-called reference implementation [22] which
differs from the descriptions in the original paper (see Section 3.2)
was published in December 2019, two years after the preprint [17].
Goals: We pursue the following objectives with this paper.
(1)Conduct the first inventor-independent detailed analysis of RMIs
to understand the impact of each hyperparameter on prediction
accuracy, lookup time, and build time.
(2) Develop a clear and simple guideline for database architects on
how to configure RMIs with good lookup performance.
(3) Provide a clean and easily extensible implementation of RMIs.

https://doi.org/10.14778/3510397.3510405
https://github.com/BigDataAnalyticsGroup/analysis-rmi
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3510397.3510405

Contributions:We make the following contributions to achieve
these goals:
(1) Learned Tree-Structured Indexes. We revisit in detail re-
cursive model indexes [18] and explain how they are trained and
what hyperparameters to consider (Section 2). We provide a de-
tailed overview on the design dimensions of learned indexes and
the already large body of work in that space (Section 3).
(2) Hyperparameter Analysis. We present our experimental
setup (Section 4) and conduct a set of extensive experiments to
analyze the impact of each hyperparameter on predictive accuracy
and search interval size (Section 5), lookup performance (Section 6),
and build time (Section 7).
(3) Configuration Guideline. Based on our findings, we develop
a simple guideline to configure RMIs in practice (Section 8).
(4) Comparison with Other Indexes. We compare the RMIs
resulting from our guideline in terms of lookup time and build time
with a number of learned indexes like ALEX [7], PGM-index [9],
RadixSpline [15], and the reference implementation of RMIs [23], as
well as state-of-the-art traditional indexes like B-tree [3], ART [19],
and Hist-Tree [5] (Section 9).

2 RECURSIVE MODEL INDEXES
In this section, we recap recursive model indexes, how to perform a
lookup, how they are trained, and what their hyperparameters are.

2.1 Core Idea
RMIs are based on the observation that the position of a key in
a sorted array can be computed using the cumulative distribution
function (CDF) of the data. Let 𝐷 be a dataset consisting of 𝑛 = |𝐷 |
keys. Further, let 𝑋 be a random variable that takes each key’s
value with equal probability and let 𝐹𝑋 be the CDF of 𝑋 . Then, the
position 𝑖 of each key 𝑥𝑖 ∈ 𝐷 in the sorted array is computed as:

𝑖 = 𝐹𝑋 (𝑥𝑖) · 𝑛 = 𝑃 (𝑋 ≤ 𝑥𝑖) · 𝑛 (1)

Note that in the context of learned indexes, the term CDF is fre-
quently used synonymously for a mapping from key to position
in the sorted array instead of its statistical definition of a mapping
from key to the probability that a random variable will take a value
less than or equal to that key. In the following, we submit to the
former interpretation.

The core idea of an RMI is to approximate the CDF of a dataset
by means of a hierarchical, multi-layer model. Consider Figure 1 for
an example three-layer RMI. Each model in an RMI approximates
a segment of the CDF, all models of a layer together approximate
the entire CDF. An RMI is a directed acyclic graph (DAG), i.e., in
contrast to a tree, a node (or model) in an RMI may have multiple
direct predecessors. We denote the 𝑖-th layer of a 𝑘-layered RMI
by 𝑙𝑖 where 0 ≤ 𝑖 ≤ 𝑘 − 1 and refer to the 𝑗-th model of the 𝑖-th
layer by 𝑓

𝑗
𝑖
. The first layer 𝑙0 of an RMI always consists of a single

root model 𝑓 00 . Each subsequent layer may consist of an arbitrary
number of models. The number of models of a layer 𝑙𝑖 is denoted
by |𝑙𝑖 | and called the size of the layer.

2.2 Index Lookup
A lookup is performed in two steps: (1) Prediction: We evaluate the
RMI on a given key yielding a position estimate. (2) Error correction:

𝑓 00

𝑓 01 𝑓 11 · · ·

𝑓 02 𝑓 12 𝑓 22 · · ·

La
ye
r𝑙

2
La
ye
r𝑙

1
La
ye
r𝑙

0

Lookup key: 𝑥=42

27 29 32 35 36 37 39 42 44 46 49... ...

error interval
[pos–err, pos+err]

pos

Figure 1: A three-layer RMI that is evaluated on key 42 yield-
ing estimated position pos (prediction). Based on pos, the
sorted array is searched for the key (error correction).

We search the key in the area around the estimated position in the
sorted array to compensate for estimation errors. We discuss both
steps in more detail below.
Prediction. Consider again Figure 1 that shows an index lookup for
key 42. We start by evaluating the root model 𝑓 00 on key 42 yielding
a position estimate. Based on this estimate, model 𝑓 01 in the next
layer 𝑙1 is chosen for evaluation. This iterative process is continued
until the position estimate pos of the last layer is obtained.
Definition (Prediction): Let 𝑅 be a 𝑘-layer RMI trained on dataset 𝐷
consisting of 𝑛 = |𝐷 | keys. Let us denote the value 𝑝 restricted to
the interval [𝑎, 𝑏] by

⟦𝑝⟧𝑏𝑎 := max
(
𝑎,min(𝑝,𝑏)

)
. (2)

The predicted position for key 𝑥 of layer 𝑙𝑖 is recursively defined as

𝑓𝑖 (𝑥) =

𝑓 00 (𝑥) 𝑖 = 0

𝑓

⌊
⟦|𝑙𝑖 | ·𝑓𝑖−1 (𝑥)/𝑛⟧|𝑙𝑖 |−10

⌋
𝑖

(𝑥) 0 < 𝑖 < 𝑘

(3)

Intuitively, to determine the model in layer 𝑙𝑖 that is evaluated on
key 𝑥 , the estimate 𝑓𝑖−1 (𝑥) of the previous layer is scaled to the
size of the current layer. Note that 𝑓𝑖−1 (𝑥) might be less than 0 or
greater than 𝑛 − 1. Thus, the result is restricted to [0, |𝑙𝑖 | − 1] to
evaluate to a valid model index. The predicted position for key 𝑥 of
RMI 𝑅 is the output of layer 𝑙𝑘−1:

𝑅(𝑥) = 𝑓𝑘−1 (𝑥). (4)

Error correction. Based on the estimate 𝑅(𝑥) obtained by evaluat-
ing the RMI, the sorted array is searched for the key. In Figure 1,
the position estimate for key 42 points to key 37 in the sorted array.
Since 37<42, we have to search to the right of 37 to find 42. To
facilitate the search, an RMI may store error bounds that limit the
size of the interval that has to be searched. The RMI guarantees that
if a key is present, then it can be found within the provided error
bounds. A simple way of achieving this is to store the maximum
absolute error err of the RMI. The left and right search bounds,
i.e., the error interval, is set to [𝑅(𝑥) − err, 𝑅(𝑥) + err]. If the key
exists, it must be within these bounds. We search the interval for
key 𝑥 using an appropriate algorithm like binary search.

Listing 1 RMI Training Algorithm.
Input: Dataset 𝐷 , number of layers 𝑘 , array of layer sizes 𝑙
Output: RMI 𝑅
1: procedure BuildRMI(𝐷 , 𝑘 , 𝑙)
2: 𝑅 := Array2D() ⊲Initialize dynamic array to store models.
3: keys := Array2D() ⊲Initialize dynamic array to store each model’s keys.
4: keys[0, 0] := 𝐷 ⊲Assign all keys to the root model.
5: for 𝑖 ← 0 to 𝑘 − 1 do
6: for 𝑗 ← 0 to 𝑙 [𝑖] − 1 do
7: 𝑅 [𝑖, 𝑗] := TrainModel(keys[i, j]) ⊲Train model 𝑗 of layer 𝑖 .
8: if 𝑖 < 𝑘 − 1 then ⊲Check whether current layer is not last layer.
9: for all 𝑥 in keys[𝑖, 𝑗] do
10: 𝑝 := GetModelIndex(𝑥, 𝑅 [𝑖, 𝑗], 𝑙 [𝑖 + 1], |𝐷 |)
11: keys[𝑖 + 1, 𝑝] .add(𝑥) ⊲Assign key 𝑥 to next-layer model 𝑝 .
12: return 𝑅

13: function GetModelIndex(𝑥, 𝑓 , 𝑞, 𝑛)
14: return

⌊
⟦𝑞 · 𝑓 (𝑥)/𝑛⟧𝑞−10

⌋
⊲Compute model index according to Equation (3).

2.3 Training Algorithm
The goal of the training process is to minimize the prediction error.
The training algorithm is shown in Listing 1. Its core idea is to
perform a top-down layer-wise bulk loading. We start by assigning
all keys to the root model (line 4). Then, the root model is trained
on those keys (line 7). Afterwards, the keys are assigned to the
next-layer models based on the root model’s estimates (lines 9–11).
We proceed by training the models of the next layer on the keys
that were assigned to them. This process is repeated for each layer
until the last layer has been trained. Finally, if desired, error bounds
can be computed on the trained RMI (after line 11).

2.4 Hyperparameters
RMIs offer a high degree of freedom in configuration and tuning. In
the following, we briefly describe each hyperparameter. We provide
a set of possible configurations for each parameter in Section 4.2
when describing the experimental setup.
Model types.Model types are crucial to the predictive quality of
RMIs. While simple models, e.g., linear regression, are small and
fast to train and evaluate, complex models, e.g., neural networks,
might offer higher accuracy, but are slow to train and evaluate.
Layer count. The number of layers 𝑘 determines the depth of an
RMI. While a deeper RMI might distribute the keys more evenly
over the last-layer models, deeper RMIs are larger in size and take
longer to train and evaluate.
Layer sizes. The size of a layer defines the number of models
in that layer. A higher number of models leads to more accurate
predictions since the segments that the models have to cover are
smaller.
Error bounds. Error bounds facilitate the error correction by lim-
iting the size of the interval that has to be searched. Error bounds
can be chosen on different granularities or be omitted altogether.
Search algorithm. Depending on the error bounds, several search
algorithms may be applied to perform error correction, e.g., binary
search, linear search, or exponential search.

3 RELATEDWORK
The introduction of learned indexes by Kraska et al. [18] caused both
excitement and criticism within the database community. Early crit-
icism mainly focused on the lack of efficient updates, the relatively

weak baselines, and the absence of an open-source implementa-
tion [2, 24]. Later, Crotty [5] claimed that the performance advan-
tages of learned indexes are primarily due to implicit assumptions
on the data such as sortedness and immutability. Subsequently pub-
lished learned indexes addressed some of these weaknesses [7, 9, 10].
Nevertheless, RMI remains one of the fastest indexes in experimen-
tal evaluations [5, 14, 15, 22].

3.1 Learned Indexes
Existing learned indexes commonly approximate the CDF. These
indexes most notably differ in (1) the type of model they use to
approximate the CDF, (2) whether they are trained bottom-up or
top-down, and (3) whether they support updates.
FITing-tree. FITing-tree [10]models the CDF using piecewise linear
approximation (PLA). During training, a dataset is first divided
into variable-sized segments by a greedy algorithm in a single
pass over the data. The segments are created in such a way that
their linear approximation satisfies a user-defined error bound.
Segments are then indexed by bulk loading them into a B-tree.
A lookup consists of traversing the B-tree to find the segment
that contains the key, computing an estimated position based on
the linear approximation of the segment, and searching the key
within the error bounds around the estimated position. FITing-tree
supports inserts, either in-place by shifting existing keys within
the segment or using a buffering strategy, where each segment
has a buffer that is merged with the other keys in the segment
whenever the buffer is full. Unfortunately, at the time of writing,
no open-source implementation of FITing-tree was available which
kept us from including it in our experiments.
ALEX. ALEX [7] uses a variable-depth tree structure to approxi-
mate the CDF with linear models. Internal nodes are linear models
which, given a key, determine the child node. Leaf nodes hold the
data, the distribution of which is again approximated by a linear
model. During a lookup the tree is traversed until a leaf node is
reached, then a position is predicted using the leaf’s linear model,
and finally, the key is searched using exponential search. Like RMI,
ALEX is trained top-down, however, ALEX has a dynamic structure
that is controlled by a cost model, which decides how to split nodes.
ALEX supports inserts by splitting or expanding full nodes.
PGM-index. PGM-index [9] also approximates the CDF by means
of PLA. Similar to FITing-tree, PGM-index starts by computing seg-
ments that satisfy an error bound. However, in contrast to FITing-
Tree, PGM-index creates a PLA-model that is optimal in the number
of segments. Each segment is represented by the smallest key in
that segment and a linear function that approximates the segment.
Afterwards, this process is continued recursively bottom-up by
again creating a PLA-model on the smallest keys of each segment.
The recursion is terminated as soon as a single segment is left. So
unlike ALEX, each path from the root model to a segment is of
equal length. A lookup is an iterative process where on each level
of the PGM-index (1) a linear model predicts the next-layer seg-
ment containing the key, (2) the correct segment is searched within
the error bounds around the prediction using binary search, and
(3) the process is continued for the next-layer segment until the
sorted array of keys is reached. Ferragina and Vinciguerra [9] also
introduce variants of PGM-index that support updates (dynamic

PGM-index) and compression on the segment level (compressed
PGM-index). The size of PGM-index depends on the number of
segments required to satisfy the used-defined error bound.
RadixSpline. In contrast to the aforementioned learned indexes,
RadixSpline [15] approximates the CDF using a linear spline. The
linear spline is fit in a single pass over the data and to satisfy a
user-defined error bound. The resulting spline points are inserted
into a radix table that maps keys to the smallest spline point with
the same prefix. The size of the radix table depends on the user-
defined prefix length. A lookup consists of finding the spline points
surrounding the lookup key using the radix table, performing linear
interpolation between the spline points to obtain an estimated
position, and applying binary search in the error interval around
the estimated position to find the key. Like RMI, RadixSpline has a
fixed number of layers and does not support updates.

3.2 Experiments and Analysis
Marcus et al. [23] published an open-source implementation of
RMIs along with an automatic optimizer in December 2019. The
reference implementation differs in some respects from the original
description [18]. For instance, model types like B-tree nodes and
neural networks are missing and error bounds are determined on a
different granularity. Given a dataset, the optimizer uses exhaus-
tive enumeration to determine a set of pareto-optimal (in terms of
lookup time and index size) two-layer RMI configurations consist-
ing of first-layer model type, second-layer model type, and second-
layer size. Instead of blindly performing this costly enumeration,
our work aims to understand the impact of each hyperparameter
and to develop a simple guideline. Further, in addition to model
types and layer sizes, we also consider error bounds and search
algorithms when configuring RMIs.

Kipf et al. [14] introduced the Search On Sorted Data (SOSD)
benchmark, a benchmarking framework for learned indexes. Be-
sides providing a variety of index implementations, they supply
four real-world datasets. In their preliminary analysis, the authors
conclude that RMI and RadixSpline are able to outperform tradi-
tional indexes including ART [19], FAST [13], and B-trees while
being significantly smaller in size. The authors also state that the
lack of efficient updates, long building times, and the need for
hyperparameter tuning are notable drawbacks of learned indexes.

As a follow-up, Marcus et al. [22] conduct a more detailed exper-
imental analysis of learned indexes based on the framework and
datasets from SOSD [14]. The authors perform a series of experi-
ments to explain the superior performance of learned indexes and
conclude that a combination of fewer cache misses, branch misses,
and instructions account for most of the improved performance
compared to traditional indexes. Further, the authors show that
learned indexes are pareto-optimal in terms of size and lookup
performance independently of dataset and key size.

Both aforementioned studies [14, 22] involve inventors of the
RMI and aim to explain the performance of learned indexes in
general. Since the evaluated RMI configurations were obtained
using the optimizer [23], the studies neither show the impact of
incorrectly configuring an RMI, nor do the studies provide advice
on how to configure RMIs outside of using the optimizer. In contrast,
to the best of our knowledge, we conduct the first independent and

holistic analysis of RMIs that directly compares configurations and
aims to explain their performance.

Ferragina et al. [8] take a theoretical approach at understanding
the benefits of learned indexes, specifically of indexes based on PLA.
The authors show that for a number of distributions, PGM-index [9],
while achieving the same query time complexity as B-trees, offers
improved space complexity. To support their theoretical results,
the authors conduct several experiments both on synthetic and
real-world datasets. The theoretical results build a solid foundation
for further research. However, since RMIs are neither limited to
PLA nor do RMIs aim to construct the optimal number of segments,
the results cannot be transferred to RMIs.

4 EXPERIMENTAL SETUP
In this section, we introduce the implementation, hyperparame-
ters, datasets, and workload used in our experiments and baselines
considered for comparison. All experiments are conducted on a
Linux machine with an Intel® Xeon® CPU E5-2620 v4 (2.10GHz,
20MiB L3) and 4x8GiB DDR4 RAM. Our code is compiled with
clang-12.0.1, optimization level -O2, and executed single-threaded.

4.1 Implementation
Our implementation of RMIs is written in C++. RMI classes have
a fixed number of layers and model types are passed as template
arguments. This implies that all models in a layer are of the same
type. Training algorithms of the model types are adapted from
the reference implementation [23]. When assigning keys to the
next-layer models, the reference implementation always copies
keys to a new array. We optimized the training process based on
the observation that the models considered here are monotonic
and will never create overlapping segments. Thus, when assigning
keys to next-layer models, we simply store iterators on the sorted
array of the first and last key of each segment. We then train the
next-layer models by passing them the respective iterators and
thereby avoid copying the keys. Further, instead of training all
models on a mapping from key to position in the sorted array, we
train inner layers on a mapping from key to next-layer model index
which is obtained by scaling the position to the size of the next
layer similar to Equation (3). In other words, we train inner layers
directly on a targeted equal-width segmentation. This approach
saves a multiplication and division during lookup that are otherwise
required for computing the model index from the position estimate.

4.2 Hyperparameters
In the following, we give a list of hyperparameter configurations
evaluated in our experiments and briefly compare them against
those considered by the reference implementation’s optimizer [23].
Model types. Table 1a lists the model types considered in our eval-
uation. Linear regression (LR) is a linear model that minimizes the
mean squared error (MSE). Linear spline (LS) and cubic spline (CS)
fit a linear respectively cubic spline segment through the leftmost
and rightmost data points. Radix (RX) eliminates the common prefix
and maps keys to their most significant bits. Models most notably
differ in three respects.
(1) Built time. LS, CS, and RX are fast to build from the leftmost and
rightmost key. LR, a regression method, is built on all keys.

Table 1: Evaluated hyperparameter configurations.
(a) Model types

Abrv. Method Formula

LR Linear Regression 𝑓 (𝑥) = 𝑎𝑥 + 𝑏
LS Linear Spline 𝑓 (𝑥) = 𝑎𝑥 + 𝑏
CS Cubic Spline 𝑓 (𝑥) = 𝑎𝑥3 + 𝑏𝑥2 + 𝑐𝑥 + 𝑑
RX Radix 𝑓 (𝑥) = (𝑥 ≪ 𝑎) ≫ 𝑏

(b) Error bounds

Abrv. Method Granularity

LInd Local Individual [18] max +/- error per model
LAbs Local Absolute [23] max abs error per model
GInd Global Individual max +/- error per RMI
GAbs Global Absolute max abs error per RMI
NB No Bounds [18] -

(c) Search algorithms

Abrv. Method

Bin Binary Search
MBin Model-biased Binary Search [18]
MLin Model-biased Linear Search
MExp Model-biased Exponential Search [18]

(2) Evaluation time. RX is the fastest to evaluate with only two bit
shifts. LR and LS are equally fast to evaluate, CS is the slowest.
(3) Predictive quality. LS and CS are spline techniques whose pre-
dictive quality is based on how representative the leftmost and
rightmost keys are. LR minimizes the error across all keys. RX is
radix-based and therefore only used for segmentation.

In addition to the four models listed, the optimizer [23] consid-
ers radix tables and a specialized variant of linear regression (see
Section 9.1) for the first layer and cubic splines for the second layer.
We decided to evaluate a smaller set of model types to analyze
the impact of model types in general. Since the optimizer always
recommends LR for the second layer, we only consider LR and LS
for the second layer.
Layer count. Like the optimizer [23], we only consider two-layer
RMIs. It was previously reported that in most cases two layers
are sufficient to accurately approximate a CDF [22, 23], which we
verified for the considered datasets in preliminary experiments. We
plan to explore multi-layer RMIs as part of future work.
Layer size. We cover the same wide range of second layer sizes
between 26 and 225 in power of two steps like the optimizer [23].
Error bounds. We consider five different variants of error bounds
listed in Table 1b, which differ in the granularity of the stored
bounds in two respects. (1) Error bounds might either be computed
for each last-layer model (local) or for the entire RMI (global). Global
bounds, while being more memory efficient, are prone to outliers
as the single largest error determines the search interval size of
all lookups. Local bounds are more robust against outliers as an
outlier only affects the respective model. (2) We can either store the
maximum absolute error (absolute) or both the maximum positive
and negative error individually (individual). While the former is
again more space efficient, the latter allows for tighter bounds,
especially, if a model either overestimates or underestimates the
actual position. Additionally, we might not store any bounds (NB).
Both local individual (LInd) and NB were suggested by Kraska
et al. [18]. The reference implementation supports local absolute
bounds (LAbs) and NB, but the optimizer [23] always recommends
LAbs.
Search algorithm. The evaluated search algorithms are listed in
Table 1c. We generally distinguish between two types of search al-
gorithms: (1) search algorithms that only consider the error bounds
and (2) search algorithms that also utilize the estimated position
(model-biased) [18]. Standard binary search is an example of the first
type of search algorithm. We search the key in the interval between
the two error bounds and ignore the position estimate. However,
binary search can be adjusted to become model-biased. Instead of
choosing the middle element of the interval as first comparison
point, we pick the estimated position. Similarly, linear search and

exponential search can be tweaked to becomemodel-biased. Instead
of searching the interval from left to right, we start the search from
the estimated position and search to the left or right, depending
on whether the prediction is an overestimation or an underestima-
tion. The search is stopped once it is certain that the key cannot
be found anymore. Initially, we also considered standard linear
search and exponential search for our experiments but both always
performed worse than their model-biased counterparts. Note that
not all combinations of error bounds and search algorithms make
sense, e.g., in the case of absolute error bounds, model-biased binary
search and standard binary search are essentially the same as the
estimate will be the center of the interval. Further, model-biased lin-
ear and exponential search do not require bounds. Previous studies
compared binary [14, 18, 22], linear, and interpolation search [22].
Model-biased variants of linear and exponential search have not
been studied in the context of RMIs so far.

4.3 Datasets
Learned indexes are know to adapt well to artificial data sampled
from statistical distributions [22]. Therefore, we use the four real-
world datasets from the SOSD benchmark [14]. Each dataset con-
sists of 200M 64-bit unsigned integer keys. The CDFs of the four
datasets are depicted in Figure 2, zoom-ins show a segment of 100
consecutive keys and indicate the amount of noise in the dataset.
books: keys represent the popularity of books on Amazon.
fb: keys represent Facebook user ID. This dataset contains a small
number of extreme outliers, which are several orders of magnitude
larger than the rest of the keys, at the upper end of the key space.
These outliers were not plotted in previous studies [14, 22].
osmc: keys represent cell IDs on OpenStreetMap. This dataset has
clusters that are artifacts of projecting two-dimensional data into
one-dimensional space [22].
wiki: keys are edit timestamps on Wikipedia, contains duplicates.

4.4 Workload
For the lookup performance, we consider lower bound queries,
i.e., for a given key, the index returns an iterator to the smallest
element in the sorted array that is equal to or greater than the

0 4 8
Key 1e18

0

1

2

Po
si
ti
on

1e8 books

0.0 0.8 1.6
Key 1e19

fb

0.0 0.5 1.0
Key 1e19

osmc

1.0 1.1 1.2
Key 1e9

wiki

Figure 2: CDFs of four real-world datasets from SOSD [14].
Zoom-ins show segments of 100 consecutive keys.

Table 2: Overview of the considered baselines.

Method Type Hyperparameters Source

RMI [18] Learned model types, layer size [20]
ALEX [7] Learned sparsity [6]
PGM-index [9] Learned max error [28]
RadixSpline [15] Learned radix width, max error [16]
B-tree [3] Tree sparsity [4]
Hist-Tree [5] Tree num bins, max error [27]
ART [19] Trie sparsity [21]
Binary search Search - [26]

key. The sorted array is kept in memory and we perform 20M
lookups per run, the keys of which are sampled from the sorted
array uniformly at random with a fixed seed. Reported execution
times are the average execution time of the median of three runs.

4.5 Baselines
In Section 9, we compare our RMI implementation against a num-
ber of baselines listed in Table 2 for which we use the referenced
open-source implementations. Due to our focus on ranking the
performance of RMIs, we consider all publicly available learned
indexes but only some representatives of traditional indexes.
Learned indexes. ALEX [7], PGM-index [9], and RadixSpline [15]
are learned indexes discussed in Section 3.1. The index size of
PGM-index and RadixSpline is varied based on the maximum error.
Additionally, RadixSpline provides a parameter to adjust the size
of the radix table that is used to index the spline points. Since we
do not consider update performance here, we use the standard
variant of PGM-index, which does not support updates. ALEX does
not provide any parameters itself, so we vary its size by adjusting
the number indexed keys (sparsity) by inserting only every 𝑘-th
key. In addition, we also consider the reference implementation of
RMIs [23] that is configured using its integrated optimizer.
Traditional indexes. B-tree [3] and ART [19] are traditional in-
memory index structures. We vary the size of B-tree and ART
by adjusting the number of keys that are inserted. Therefore, we
use an implementation of ART that supports lower bound queries
from SOSD [14]. The recently published Hist-Tree [5] is a tree-
structured index. Each inner node in a Hist-Tree is a histogram
that partitions the data into equal-width bins. Like learned indexes,
Hist-Tree exploits that the data is sorted. Hist-Tree provides two
tuning parameters: the number of bins determines the size of inner
nodes and the maximum error defines a threshold for the size of a
terminal node. We use an implementation of a Compact Hist-Tree
that does not support updates in favor of lookup performance [27].
Binary search. We also consider standard binary search over the
sorted array without any index as provided by std::lower_bound.

5 PREDICTIVE ACCURACY ANALYSIS
In this section, we analyze the impact of hyperparameters on the
predictive accuracy of RMIs. Our analysis is divided into three parts.
Segmentation (Section 5.1): We investigate how root models of
different types divide the keys into segments.
Position Prediction (Section 5.2): We analyze how accurately
different combinations of models approximate the CDF.
Error Bounds (Section 5.3): We examine how different types of
error bounds limit the error interval to be searched.

0 4 8
Key 1e18

0

1

2

Es
ti
m
at
ed

po
si
ti
on

1e8 books

0.0 0.8 1.6
Key 1e19

fb

0.0 0.6 1.2
Key 1e19

osmc

1.0 1.1 1.2
Key 1e9

wiki
CDF CS LR LS RX

Figure 3: CDF approximations by root models of different
types based on which keys are segmented.

212 220
of segments

0%

50%

100%

Pe
rc

en
ta

ge
 o

f
em

pt
y

se
gm

en
ts books

212 220
of segments

fb

212 220
of segments

osmc

212 220
of segments

wiki
CS LR LS RX

Figure 4: Percentage of empty segments when segmenting
the keys with different first-layer models.

5.1 Segmentation
An RMI divides the keys into segments based on its root model’s
approximation of the CDF. Assuming a root model correctly pre-
dicts the position of each key, each segment would consist of the
same number of keys. Therefore, RMIs aim for an equal-depth seg-
mentation by design. This approach to segmentation has a crucial
weakness: it ignores whether the resulting segments can be accu-
rately approximated by the next-layer models. In contrast, other
learned indexes like PGM-index [9] and RadixSpline [15], which
are built bottom-up, explicitly create segments that meet a certain
error tolerance. Consequently, the quality of an RMI’s segmentation
cannot be assessed independently of the next layer. In the follow-
ing, we address two problems that may occur when segmenting
keys in an RMI: (1) empty segments, which do not contain any keys,
and (2) large segments, which contain significantly more keys than
others. Figure 3 shows the CDFs and the corresponding root model
approximations.
Empty segments. Since there is a second-layer model for every
segment, empty segments increase the size of an RMI without im-
proving the prediction accuracy. Thus, we should aim for as few
empty segments as possible. Figure 4 shows the percentage of empty
segments of each model type on each dataset for a varying number
of segments. We generally observe that the percentage of empty
segments increases with an increasing number of segments. The
more accurately a model approximates the CDF, the fewer empty
segments it creates. For instance, CS produces empty segments on
books only after a high number of segments is reached. In contrast,
radix predictions often do not cover the full range of positions,
e.g., on wiki, leaving the segments associated with the non-covered
positions empty. The clustered distribution of osmc dataset causes
percentages to be generally higher and to increase more quickly
since the keys are distributed over a small number of segments. Due
to the few extreme outliers that strongly affect the CDF approxima-
tion of fb, all models map the majority of keys to the same position,
causing all of these keys to be assigned to the same segment. In-
creasing the number of segments gradually removes the outliers

212 220
of segments

102

104

106

108

Si
ze

 o
f l

ar
ge

st
se

gm
en

t

books

212 220
of segments

fb

212 220
of segments

osmc

212 220
of segments

wiki
CS LR LS RX

Figure 5: Size of the largest segment when segmenting the
keys with different first-layer models.

from this segment, but the segment will continue to contain most
keys.
Large segments. Large segments potentially follow a more com-
plex distribution and are more difficult to approximate by the
second-layer models. Therefore, large partitions may negatively
affect the prediction quality of an RMI. Figure 5 shows the number
of keys that reside in the largest segment. Again, the more accu-
rate a model approximates the CDF, the more evenly the keys are
distributed over the segments. Logically, the average segment size
decreases as the number of segments increases. However, this does
not necessarily apply to the largest segment. For LR, the size of the
largest partition often remains near-constant. The reason for this is
that LR may produce estimates outside the range of valid positions.
These out-of-range predictions are then clamped to either the first
or last valid position. All keys whose prediction is clamped will be
assigned to the same segment. Increasing the number of segments
only decreases the size of these segments until the segments consist
exclusively of keys whose prediction had to be clamped. CS, LS, and
RX do not produce estimates outside the range of valid positions
and therefore do not exhibit this problem. As discussed before, on
fb, almost all keys reside in a single segment, regardless of the
number of segments and type of the root models. As we will see
in subsequent experiments, the inability of the considered model
types to segment datasets with extreme outliers is the main reason
for inaccurate predictions, large error intervals, and slow lookups
on fb.
Summary. When choosing a first-layer model type for segmenta-
tion, empty and large segments should be avoided. In our experi-
ments, LS and CS produced the most uniform segments. RX tends to
produce many empty segments. LR often creates large segments at
the upper and lower end of the key space due to clamping. If none
of the models satisfactorily segments the keys as with fb, more
complex models must be considered.

5.2 Position Prediction
To analyze the impact of model types on prediction accuracy, we
train RMIs of all combinations of first-layer and second-layer model
types with different second-layer sizes on the four datasets. In Fig-
ure 6, we report the median absolute error over all keys as a measure
of deviation between predicted position and actual position. We
decided against reporting the mean absolute error due to variances
caused by high errors on the large partitions when segmenting
with LR. In the remainder, we refer to an RMI that uses RX and LR
in the first and second layer, respectively, as RX↦→LR.

As expected, RMIs with more segments and thus more second-
layer models generally produce more accurate predictions. On both

100

101

102

103

104

M
ed

ia
n

ab
so

lu
te

 e
rr

or

books books

101

103

105

107

M
ed

ia
n

ab
so

lu
te

 e
rr

or

fb fb

100
101

102
103
104
105

106

M
ed

ia
n

ab
so

lu
te

 e
rr

or

osmc osmc

28 211 214 217 220 223
of segments

100

101

102

103

104

105

106

M
ed

ia
n

ab
so

lu
te

 e
rr

or
wiki

28 211 214 217 220 223
of segments

wiki

CS↦LR
CS↦LS

LR↦LR
LR↦LS

LS↦ LR
LS↦ LS

RX↦LR
RX↦LS

Figure 6: Median absolute error of RMIs with different com-
binations of first-layer and second-layer models.

the books and wiki dataset, RMIs with more than 219 second-layer
models even achieve errors in single digits. The osmc and fb dataset
are more difficult to approximate. The osmc dataset has a clustered
distribution that results in a high number of empty segments, mak-
ing non-empty segments larger on average. Additionally, these
segments often have a significant amount of noise and cannot be
approximated precisely with the models considered here. Similarly,
the large prediction error of fb can also be attributed to the single
large segment. The sudden drop in prediction error between 215
and 217 segments is due to fewer of the outliers being assigned to
the large segment anymore. Although the distribution within that
large segment is close to uniform, it still contains a considerable
amount of noise that leads to the persistent high prediction error.

Comparing the different RMI configurations, RMIs with LR, LS,
and CS as root model achieve similar errors while RX performs
slightly worse. This indicates that in terms of prediction accuracy,
RX is less suitable for segmentation. Regarding the second-layer
models, LR always achieves lower errors than LS. This is expected
since LR is the only regression model and minimizes the MSE.
Summary. For the first layer, a segmentation that distributes the
keys over many models is a prerequisite for high prediction accu-
racy. For the second layer, regression models like LR achieve higher

101

102

103

104

105

106

M
ed

ia
n

se
ar

ch
in

te
rv

al
 s

iz
e

books (LS↦ LR) books (RX↦ LS)

102

104

106

108

M
ed

ia
n

se
ar

ch
in

te
rv

al
 s

iz
e

osmc (LS↦ LR) osmc (RX↦ LS)

10−3 10−2 10−1 100 101 102 103
Index size [MiB]

101

102
103
104
105

106
107

M
ed

ia
n

se
ar

ch
in

te
rv

al
 s

iz
e

wiki (LS↦ LR)

10−3 10−2 10−1 100 101 102 103
Index size [MiB]

wiki (RX↦ LS)

GAbs GInd LAbs LInd

Figure 7: Comparison of error interval sizes for different
error bounds for two example model combinations.

accuracy than spline models since regression models minimize the
prediction error. Increasing the second-layer size of an RMI further
improves its accuracy. Overall, LS ↦→LR and CS↦→LR achieve good
accuracy across datasets, except for fb due to poor segmentation.

5.3 Error Bounds
Error bounds facilitate correcting prediction errors by limiting the
size of interval that has to be searched during a lookup. To evaluate
the impact of different error bounds, we again train RMIs with
all combinations of first-layer and second-layer model type and
varying second-layer size. For each configuration, we compute error
bounds of different types and record the error interval sizes over all
keys. In Figure 7, we report the median error interval size, i.e., the
median number of keys that have to be searched during a lookup.
Due to limited space, we only show two combinations of models
and omit fb as the size of the error interval remains near constant
due to inaccurate predictions. However, the observations made and
conclusions drawn also apply to the combinations of model types
which are not shown.

Global bounds consistently lead to significantly larger error in-
tervals than local bounds, despite the fact that at a similar index
size, global bounds allow for more second-layer models and achieve
on average more accurate predictions. Global bounds, however, are
prone to single bad predictions, whereas local bounds are more
robust because they refer to only one model. LInd and LAbs achieve
similar error interval sizes. Spline models, which tend to either
overestimate or underestimate, profit from LInd. LR, which often
achieves similar positive and negative errors, works better with
LAbs as LAbs allows for more second-layer models at a similar size.

Summary. Considering RMIs of similar size, local bounds consis-
tently result in smaller error intervals than global bounds. For the
preferred second-layer model type LR, LAbs achieves smaller error
intervals due to more second-layer models at a similar index size.

6 LOOKUP TIME ANALYSIS
In this section, we analyze the impact of hyperparameters on the
lookup performance of RMIs. Our analysis is divided into two parts.
Model Types (Section 6.1): We investigate the lookup performance
of different combinations of first and second-layer model types.
Error Correction (Section 6.2): We analyze the impact of error
bounds and search algorithms on lookup performance.

6.1 Model Types
To evaluate the impact of model types on lookup performance, we
train RMIs of all combinations of first-layer and second-layer model
type with varying second-layer sizes. We use no bounds and model-
biased exponential search (NB+MExp) for error correction as this
configuration relies solely on the predictive power of the RMI and
thus most clearly illustrates the differences between the various
combinations of model types. In Figure 8, we report the average
lookup time of each configuration. The dashed horizontal lines are
the average time for obtaining a key using binary search.

For a fixed index size, the lookup times of different models within
a dataset often differ only slightly, e.g., on osmc and books, all com-
binations of models have similar lookup times. However, lookup
times vary significantly across different datasets. This observation
is consistent with the prediction errors we saw in Section 5.2. The
reason for this is that lookup time consists of evaluation time and
error correction time. The error correction time accounts for the
majority of lookup time and is determined by the prediction error.
However, balancing evaluation time and error correction time is a
trade-off that has to be carefully considered. In our experiments,
we only consider relatively simple models that are fast to evaluate
and, as a result, there are only minor differences in evaluation time.
In preliminary experiments, we also considered neural networks,
which achieved higher prediction accuracy, but the faster error cor-
rection was overshadowed by a significantly higher evaluation time
ultimately resulting in considerably slower lookups. Of the mod-
els considered here, CS is the slowest to evaluate. We can observe
the impact of its slower evaluation time compared to LS on books

where despite CS ↦→LR being slightly more accurate than LS ↦→LR,
LS ↦→LR achieves faster lookups. Differences in evaluation time are
particularly noticeable when the error correction time is relatively
short which often is the case for larger configurations.
Summary. Prediction accuracy is a strong indicator for lookup
performance as it determines the error correction time. Therefore,
models like CS ↦→LR and LS↦→LR that achieve good accuracy across
datasets should be chosen. However, the more accurate the predic-
tions are, the more important become differences in evaluation time
and models that are slightly less accurate but faster to evaluate have
an advantage. Increasing the second-layer size improves accuracy
and causes the lookup time to converge.

0

200

400

600

800

Lo
ok

up
 t

im
e

[n
s]

books books

0

250

500

750

1000

1250

1500

1750

Lo
ok

up
 t

im
e

[n
s]

fb fb

0

200

400

600

800

1000

1200

1400

Lo
ok

up
 t

im
e

[n
s]

osmc osmc

10−3 10−2 10−1 100 101 102
Index size [MiB]

0

200

400

600

800

1000

Lo
ok

up
 t

im
e

[n
s]

wiki

10−3 10−2 10−1 100 101 102
Index size [MiB]

wiki

CS↦LR
CS↦LS

LR↦LR
LR↦LS

LS↦ LR
LS↦ LS

RX↦LR
RX↦LS

Figure 8: Comparison of lookup time for different combina-
tions of models with NB+MExp for error correction.

6.2 Error Correction
Next, we examine the impact of eight combinations of error bounds
and search algorithms for error correction on lookup time. We
consider the following combinations. NB is evaluated with MLin
and MExp as both search algorithms do not use bounds. GInd and
LInd are evaluatedwithMBin and Bin. GAbs and LAbs are evaluated
with Bin only as MBin and Bin are the same in case of absolute
bounds. In Figure 9, we report the average lookup time. Due to
limited space, we again show only two combinations of models
and omit fb because lookup performance could not be significantly
improved compared to Figure 8 in this experiment. However, our
observations also hold for the combinations of models that are not
shown here.

We observe that either a configuration with local bounds or
without any bounds performs best. Local bounds generally perform
better than global bounds, which is consistent with our observation
from Section 5.3. Nevertheless, binary search mitigates differences
in search interval size drastically, e.g., global and local bounds
perform almost identical with LS ↦→LR on books, although the search
interval sizes differ by more than an order of magnitude. LInd
and LAbs perform almost identical with a maximum performance
difference of factor 1.1x. Similar to what we saw in Section 5.3,

0

200

400

600

800

Lo
ok

up
 t

im
e

[n
s]

books (LS↦ LR) books (RX↦ LS)

0

200

400

600

800

1000

1200

1400

Lo
ok

up
 t

im
e

[n
s]

osmc (LS↦ LR) osmc (RX↦ LS)

10−3 10−2 10−1 100 101 102 103
Index size [MiB]

0

200

400

600

800

1000

Lo
ok

up
 t

im
e

[n
s]

wiki (LS↦ LR)

10−3 10−2 10−1 100 101 102 103
Index size [MiB]

wiki (RX↦ LS)

GAbs+Bin
GInd+Bin

GInd+MBin
LAbs+Bin

LInd+Bin
LInd+MBin

NB+MExp
NB+MLin

Figure 9: Comparison of lookup time for different error cor-
rections using two combinations of models as examples.

LS works better with LInd as it tends to either overestimate or
underestimate, LR works better with LAbs as its loss function often
causes the maximum overestimation and underestimation to be
similar. Considering LInd, there is hardly any difference between
Bin and MBin.

Similar to what we saw in Section 6.1 with respect to model
types, the choice of error bounds not only affects error correction
time but also evaluation time as error bounds induce overhead for
computing the search interval’s limits. Hence, RMIs without error
bounds are faster to evaluate. The faster evaluation is particularly
noticeable when the RMI achieves a high prediction accuracy and
thus fast error correction. In these cases, NB+MExp performs better
than configurations with bounds as can be seen with books and
wiki. To further analyze when to use NB+MExp over configura-
tions with bounds, we also recorded the mean log2 error as an
estimate of the number of search steps required by MExp. Starting
at an mean log2 error of around 7 to 10, NB+MExp is faster than
LAbs+Bin. NB+MLin requires even lower errors to be similarly fast
as NB+MExp.
Summary. The best combination of error bounds and search algo-
rithm depends on the predictive accuracy of the RMI. If the mean
log2 error is sufficiently small, NB+MExp performs best due to
RMIs without bounds being faster to evaluate. For larger errors,
configuration with local bounds such as LAbs+Bin perform better.

7 BUILD TIME ANALYSIS
In this section, we analyze the build time of our implementation
of RMIs and compare it with the reference implementation [23].
Recall that the build process of a two-layer RMI consists of four

10−2 100 102
Index size [MiB]

0

2

4

6

8

10

Bu
ild

 t
im

e
[s

]

books (NB)

CS↦LR
LR↦LR

LS↦ LR
RX↦LR

(a) Layer 1 type

10−2 100 102
Index size [MiB]

0

2

4

6

8

10

Bu
ild

 t
im

e
[s

]

books (NB)

LS↦ LS
LS↦ LR

RX↦LS
RX↦LR

(b) Layer 2 type

10−2 100 102
Index size [MiB]

0

2

4

6

8

10

Bu
ild

 t
im

e
[s

]

books (LS↦ LR)

GAbs
GInd

LAbs
LInd

NB

(c) Error bound

Figure 10: Build times when varying hyperparameters.

steps: (1) training the root model, (2) creating segments, (3) training
the second-layer models, and (4) computing error bounds. Figure 10
shows build times on books. Other datasets are not shown because
except for minor caching effects on large configurations, the build
time is independent of the dataset. We discuss each aspect that
affects build time individually below.
First-layer type. Consider Figure 10a for a build time comparison
of different root models. Models in general and root models in
particular not only differ in training time, which affects step (1),
but also in evaluation time, which affects steps (2) and (4). The
most notable difference between the models in terms of training
time is whether a model considers all keys, like LR, or a constant
number of keys, like LS, CS, and RX. Since the evaluation time of
LR and LS is the same, the difference in build time in Figure 10a can
be attributed entirely to the training time of the root model. Like
LS, RX also considers only two keys for training. Here, the faster
build time of RX is caused by the faster evaluation of RX during
segmentation. CS is faster than LR because it again only considers
a constant number of keys but slower than LS because training and
evaluation are slightly slower.
Second-layer type. Consider Figure 10b for a build time com-
parison of different second-layer models. Analogously to the root
model type, the second-layer model type affects training time and
evaluation time. Second layers consisting of LS models takes about
two seconds less to train than second layers consisting of LR mod-
els. Note that in this example, the second layer is never evaluated
because we do not compute bounds. Otherwise, evaluation time
would be the same for LR and LS.
Error bounds. Consider Figure 10c for a build time comparison of
different error bounds. Computing error bounds requires evaluating
the RMI on every key plus the actual computation of the bounds.
This additional effort explains the difference in built time between
NB and configurations with bounds. The difference between indi-
vidual configurations with bounds is mainly due to branch misses
when calculating the bounds. At similar index size, local bounds trig-
ger more branch misses than global bounds and individual bounds
trigger more branch misses than absolute bounds.
Index size. Consider again the RMI configuration without bounds
in Figure 10c. The build time remains almost constant as long as
the entire RMI fits in cache (20MiB). Once the RMI no longer fits in
cache, the build time increases due to cache misses. Next, consider
the configurations with bounds in Figure 10c. Here, the previously
described branch and cachemisses add up and the build time already
increases for configurations that are smaller than the cache size.

10−2 100 102

Index size [MiB]

0

10

20

30

40

Bu
ild

 t
im

e
[s

]

books (NB)

LS ↦ LR (ours)
RX ↦ LS (ours)

LS ↦ LR (ref)
RX ↦ LS (ref)

(a) No bounds

10−2 100 102

Index size [MiB]

0

10

20

30

40

Bu
ild

 t
im

e
[s

]

books (LAbs)

LS ↦ LR (ours)
RX ↦ LS (ours)

LS ↦ LR (ref)
RX ↦ LS (ref)

(b) Local absolute bounds

Figure 11: Build times of our implementation (ours) and the
reference implementation (ref) with NB and LAbs.

The increase in build time is less pronounced if a configuration
produces many empty segments due to less cache misses.
Reference implementation. Figure 11 shows build times of our
implementation (ours) and the reference implementation (ref). Fig-
ure 11a and Figure 11b compare configurations with NB and LAbs,
respectively. Build times for both types of bounds are almost iden-
tical for the reference implementation because the reference im-
plementation always computes bounds during training and only
decides later whether these computed bounds are kept or discarded.
Considering only configurations with LAbs, our implementation
improves build times by 2.5x to 6.3x. We attribute this improvement
to our optimized segmentation for monotonous root models that
avoids copying keys as described in Section 4.1.
Summary. RMIs can be built in a matter of seconds. For a given
combination of models, the build time remains almost constant as
long as the RMI fits in the cache. The computation of error bounds
leads to additional cache and branch misses, which negatively im-
pact build times.

8 RMI GUIDELINE
Based on our findings from the previous sections, we present a
compact guideline for configuring RMIs. Our guideline does not
guarantee to always provide the fastest lookups but it is easy to
follow and achieves competitive lookup performance. Given a max-
imum allowed index size budget, we propose to configure RMIs as
follows.
Models types. LS ↦→LR with the maximum second-layer size that
is allowed by the budget. CS and LS both segment most datasets
well, but we choose LS as it is slightly faster to train and evaluate.
Although more accurate predictions can be obtained with CS, CS
is only faster for small RMIs, where the improvement in search
time outweighs the longer evaluation time. LR as second-layer
model minimizes the error and thus always performs better than
LS. Larger RMIs generally achieve smaller errors and thus perform
better, which is why we choose the maximum number of second-
layer models within the budget.
Error correction. LAbs+Bin or NB+MExp. Our experiments show
that LAbs+Bin performs better than NB+MExp until a certain error
threshold is reached. This error threshold is hardware-dependent
and must be determined empirically once. We use the mean log2
error as measure of error to estimate the number of search steps
with exponential search and determine the error threshold to be 5.8.

10−1 101 103

Index size [MiB]

200

400

600

800

Lo
ok

up
 t

im
e

[n
s]

books

10−1 101 103

Index size [MiB]

250

500

750

1000

1250
osmc

10−1 101 103

Index size [MiB]

0

200

400

600

800
wiki

RMI (fastest) RMI (guideline)

Figure 12: Comparison of lookup time of fastest configura-
tion and guideline configuration.

Whenever the mean log2 error of our RMI with NB is below the
threshold, we use NB+MExp and LAbs+Bin otherwise.

Figure 12 compares the lookup times of configurations obtained
by our guideline with the fastest configurations. As before, we omit
fb as none of the considered models segments fb well. We consider
size budgets between 2KiB and 1GiB. Our guideline is on average
only 2.0% slower than the fastest configuration with a maximum
performance decline of 11.3% on wiki.

Implementing our guideline requires training at most two RMIs:
(1) Train an RMI with LS↦→LR and NB that is within budget.
(2) Compute the mean log2 error of the RMI.
(3) If the error is above the threshold, train and use an RMI with

LAbs within budget. Otherwise, use the already trained RMI.
Limitations. In order to be simple and induce as little overhead
as possible, our guideline neglects some aspects that are required
for optimal configuration. (1) Our guideline uses fixed model types.
While LS ↦→LR works well for datasets without outliers, a more
suitable first-layer model must be sought for datasets with outliers.
(2) Our guideline only chooses between LAbs+Bin and NB+MExp
based on a rough estimate of expected search steps. In some cases,
other error correction strategies are slightly faster.

9 COMPARISONWITH OTHER INDEXES
In this section, we compare our guideline for configuring RMIs
with the indexes introduced in Section 4.5 and vary the parameters
listed in Table 2 to obtain indexes of different sizes. Configurations
of our RMI implementation are chosen based on our guideline.
Configuration of the reference implementation are chosen based
on its optimizer [23].

9.1 Lookup Time
We first compare lookup times with respect to index size. During
a lookup, each index yields a search range, either through error
bounds or level of sparsity. We use binary search to find keys in
that search range. In Figure 13, we report average lookup times. For
indexes with multiple hyperparameters, i.e., RadixSpline and Hist-
Tree, we show pareto-optimal configurations in terms of index size
and lookup time for better readability. As a result, the number of
data points shown differs across dataset. Hist-Tree and ART do not
support duplicates and are therefore not evaluated on wiki. Overall,
our results are consistent with previous reports [12, 14, 22].

Let us first consider the traditional indexes. Hist-Tree is the
fastest index on all datasets except wiki, but Hist-Tree needs index
sizes of 100MiB and more to reach its full potential. The best-
performing configurations of Hist-Tree use a high branching factor
resulting in few levels while achieving search intervals of less than

0

200

400

600

800

1000

1200

Lo
ok

up
 t

im
e

[n
s]

books fb

10−2 100 102 104

Index size [MiB]

0

200

400

600

800

1000

1200

Lo
ok

up
 t

im
e

[n
s]

osmc

10−2 100 102 104

Index size [MiB]

wiki

RMI (ours)
RMI (ref)

ALEX
PGM-index

RadixSpline
Hist-Tree

B-tree
ART

Figure 13: Comparison of lookup times w.r.t. index size.

64 keys. B-tree is the only index whose performance is completely
independent of the data distribution but also the slowest index,
barely beating binary search. ART is always faster than B-tree but
noticeably slower than all learned indexes except ALEX.

The performance of learned indexes highly depends on the data
distribution. Up to a certain index size from which Hist-Tree outper-
forms the other indexes, learned indexes achieve the fastest lookup
times. This implies that learned indexes work particularly well for
smaller index sizes. On books, fb, and wiki either our implementa-
tion of RMIs or the reference implementation dominates the other
learned indexes. On osmc, both PGM-index and RadixSpline perform
better than RMIs. ALEX is clearly the slowest learned index, which
can be attributed to its more complex adaptive structure.

Let us now compare our RMI implementation and the refer-
ence implementation [23]. On books and wiki, our implementation
dominates the reference implementation despite using our simple
guideline. There are two reasons for this. (1) Unlike how the opti-
mizer is described [23], the publicly available implementation [20]
does not consider evaluation time in its optimization process and
instead chooses configurations that achieve the smallest mean log2
error. While this results in selecting the configuration with the
fastest error correction time, it does not guarantee to select the
configuration with the fastest lookup time. The configurations cho-
sen by our guideline consistently have fast evaluation times at the
cost of potentially slower error correction. (2) The optimizer of the
reference implementation always picks LAbs. Our experiments in
Section 6.2 show that for accurate RMIs, NB+MExp performs better,
which is considered by our guideline. On osmc, no implementation
dominates the other. Here, RMIs are never sufficiently accurate
for our guidelines to deviate from LAbs+Bin. Thus, differences in
performance are solely due to the choice of models. On fb, the
reference implementation clearly dominates our implementation.
As discussed before, LS is not sufficient hor segmenting datasets
with extreme outliers. Here, the reference implementation chooses
a variant of LR that ignores the lowest and highest 0.01% of keys
for segmentation. This approach, while effectively eliminating the
outliers in fb from the segmentation process, only works if there
are at most 0.01% of outliers at either end of the key space. We did

Bi
na

ry
 se

ar
ch

RM
I (

ou
rs

)
RM

I (
re

f)
AL

EX
PG

M
-in

de
x

Ra
di

xS
pl

in
e

Hi
st

-Tr
ee

B-
tre

e
AR

T

0

200

400

600

800

Lo
ok

up
 t

im
e

[n
s]

books

Bi
na

ry
 se

ar
ch

RM
I (

ou
rs

)
RM

I (
re

f)
AL

EX
PG

M
-in

de
x

Ra
di

xS
pl

in
e

Hi
st

-Tr
ee

B-
tre

e
AR

T

fb

Bi
na

ry
 se

ar
ch

RM
I (

ou
rs

)
RM

I (
re

f)
AL

EX
PG

M
-in

de
x

Ra
di

xS
pl

in
e

Hi
st

-Tr
ee

B-
tre

e
AR

T

osmc

Bi
na

ry
 se

ar
ch

RM
I (

ou
rs

)
RM

I (
re

f)
AL

EX
PG

M
-in

de
x

Ra
di

xS
pl

in
e

Hi
st

-Tr
ee

B-
tre

e
AR

T

x x

wiki
Evaluation Search

Figure 14: Comparison of evaluation time and search time
for the best-performing configuration of each index.

not include this model type in our evaluation because we believe
that a more robust solution to segmentation should be sought.

Let us now examine the composition of lookup time from evalu-
ation time (evaluating the model or traversing the tree) and search
time (searching within the error interval or data page). Figure 14
shows the lookup time of the best-performing configuration of each
index divided into evaluation time and search time. There is a trade-
off between fast evaluation and fast search. RMIs clearly prioritize
fast evaluation: The evaluation leads to the correct segment in a
fixed number of steps, but the RMI does not provide any guarantees
on the prediction accuracy. Adding more segments continuously
improves the lookup performance because more segments hardly
increase the evaluation time while improving the search time. If
the evaluation time of our implementation is faster than that of the
reference implementation, it is because our configuration does not
use bounds. In contrast, PGM-index and RadixSpline prioritize fast
error correction: Both indexes cap the maximum error at the cost
of a slower evaluation that requires traversing multiple layers or
performing intermediate searches. At some point, the improved
search time of a smaller maximum error does not compensate the
longer evaluation time and the lookup performance decreases. Thus,
despite fewer hyperparameters than RMIs, configuring PGM-index
and RadixSpline optimally is an elaborate task.
Summary. Learned indexes perform well even at small index sizes.
Overall, Hist-Tree is the fastest evaluated index, but it requires
sizes of 100MiB and more to beat learned indexes. Other traditional
indexes perform significantly worse on sorted data.

9.2 Build Time
Next, we compare build times with respect to index size. In Fig-
ure 15, we report build times which refer to the index configurations
evaluated in terms of lookup time in Section 9.1. We show the raw
build times without the time required to determine hyperparame-
ters, e.g., by running the reference implementation’s optimizer [23]
or determining pareto-optimal configurations of RadixSpline and
Hist-Tree. Some indexes require data preparation to be built. For
instance, ALEX, B-tree, and ART are not only built on the keys but
also explicitly require the positions to which these keys should be
mapped. Since these preparation steps could be circumvented by a
specialized implementation, we do not consider them part of the
build time.

The index size of B-tree, ART, and ALEX is determined by the
level of sparsity. In contrast to learned indexes, these indexes are
built on a subset of the keys and therefore provide fast build times

0

5

10

15

20

25

30

Bu
ild

 t
im

e
[s

]

books fb

10−2 100 102 104

Index size [MiB]

0

5

10

15

20

25

30

Bu
ild

 t
im

e
[s

]

osmc

10−2 100 102 104

Index size [MiB]

wiki

RMI (ours)
RMI (ref)

ALEX
PGM-index

RadixSpline
Hist-Tree

B-tree
ART

Figure 15: Comparison of build times w.r.t. index size.

especially at smaller index sizes. With an increasing number of keys,
the structure of these indexes becomes more complex, e.g., more
levels are introduced, and the build time increases. In contrast, RMI,
PGM-index, and RadixSpline are always built on the entire dataset.
This means that their build times are higher from the outset. RMI
and RadixSpline have a fixed number of layers. Therefore, their
build time is hardly impacted by the data distribution and only
increases once the index no longer fits into cache. The sudden de-
crease in build time of RMIs on books and wiki is caused by the
guideline choosing an RMI configuration without bounds which is
faster to build. PGM-index, on the other hand, has a variable num-
ber of layers. Depending on the data distribution and the desired
error, more layers have to be trained leading to a steeper increase
in build times compared to RadixSpline and RMI. Causes for the
differences in build time between our RMI implementation and the
reference implementation [23] were already discussed in Section 7.
The reference implementation’s jumps in build time are caused by
varying build times for different model types chosen by its opti-
mizer. Hist-Tree exhibits similar build times to the learned indexes.
However at larger sizes, its built time quickly increases due to the
increasing depth of the Hist-Tree.
Summary. The benefits in terms of lookup performance of learned
indexes come at the cost of significantly higher build times com-
pared to traditional indexes. Thus, the improvement of build times
should be a priority of future work.

10 CONCLUSION AND FUTUREWORK
We provided an extensible open-source implementation of RMIs
and conducted a comprehensive hyperparameter analysis of RMIs
in terms of prediction accuracy, lookup time, and build time. Based
on this analysis, we developed a simple-to-follow guideline for
configuring RMIs, which achieves competitive performance. In ad-
dition, we were able to improve the build time of RMIs by exploiting
the monotonicity of models, thereby avoiding the copying of keys
when assigning them to the second-layer models. In the future,
we plan to extend our implementation to also support multi-layer
RMIs and additional model types. We would also like to address the
problem of segmenting datasets with extreme outliers.

REFERENCES
[1] Dana Van Aken, Andrew Pavlo, Geoffrey J. Gordon, and Bohan Zhang. 2017.

Automatic Database Management System Tuning Through Large-scale Machine
Learning. In Proceedings of the 2017 ACM International Conference on Management
of Data, SIGMOD Conference 2017, Chicago, IL, USA, May 14-19, 2017. ACM, 1009–
1024.

[2] Peter Bailis, Kai Sheng Tai, Pratiksha Thaker, and Matei Zaharia. 2018. Don’t
Throw Out Your Algorithms Book Just Yet: Classical Data Structures That Can
Outperform Learned Indexes. https://dawn.cs.stanford.edu/2018/01/11/index-
baselines/. (accessed: 2021-11-08).

[3] Rudolf Bayer and Edward M. McCreight. 1970. Organization and Maintenance of
Large Ordered Indexes. In Record of the 1970 ACM SIGFIDET Workshop on Data
Description and Access, November 15-16, 1970, Rice University, Houston, Texas, USA
(Second Edition with an Appendix). ACM, 107–141.

[4] Timo Bingmann. 2018. TLX: Collection of Sophisticated C++ Data Structures,
Algorithms, and Miscellaneous Helpers. https://github.com/tlx/tlx. (accessed:
2021-11-08).

[5] Andrew Crotty. 2021. Hist-Tree: Those Who Ignore It Are Doomed to Learn. In
11th Conference on Innovative Data Systems Research, CIDR 2021, Virtual Event,
January 11-15, 2021, Online Proceedings. www.cidrdb.org.

[6] Jialin Ding. 2020. ALEX: A library for building an in-memory, Adaptive Learned
indEX. https://github.com/microsoft/ALEX. (accessed: 2021-11-08).

[7] Jialin Ding, Umar Farooq Minhas, Jia Yu, Chi Wang, Jaeyoung Do, Yinan Li,
Hantian Zhang, Badrish Chandramouli, Johannes Gehrke, Donald Kossmann,
David B. Lomet, and Tim Kraska. 2020. ALEX: An Updatable Adaptive Learned
Index. In Proceedings of the 2020 International Conference on Management of Data,
SIGMOD Conference 2020, online conference [Portland, OR, USA], June 14-19, 2020.
ACM, 969–984.

[8] Paolo Ferragina, Fabrizio Lillo, and Giorgio Vinciguerra. 2020. Why Are Learned
Indexes So Effective?. In Proceedings of the 37th International Conference on
Machine Learning, ICML 2020, 13-18 July 2020, Virtual Event (Proceedings of
Machine Learning Research), Vol. 119. PMLR, 3123–3132.

[9] Paolo Ferragina and Giorgio Vinciguerra. 2020. The PGM-index: a fully-dynamic
compressed learned index with provable worst-case bounds. Proc. VLDB Endow.
13, 8 (2020), 1162–1175.

[10] Alex Galakatos, Michael Markovitch, Carsten Binnig, Rodrigo Fonseca, and Tim
Kraska. 2019. FITing-Tree: A Data-aware Index Structure. In Proceedings of the
2019 International Conference on Management of Data, SIGMOD Conference 2019,
Amsterdam, The Netherlands, June 30 - July 5, 2019. ACM, 1189–1206.

[11] Benjamin Hilprecht, Andreas Schmidt, Moritz Kulessa, Alejandro Molina, Kris-
tian Kersting, and Carsten Binnig. 2020. DeepDB: Learn from Data, not from
Queries! Proc. VLDB Endow. 13, 7, 992–1005.

[12] Allen Huang, Andreas Kipf, Ryan Marcus, and Tim Kraska. 2021. Learned Index
Leaderboard. https://learnedsystems.github.io/SOSDLeaderboard. (accessed:
2021-11-08).

[13] Changkyu Kim, Jatin Chhugani, Nadathur Satish, Eric Sedlar, Anthony D.
Nguyen, Tim Kaldewey, Victor W. Lee, Scott A. Brandt, and Pradeep Dubey.
2010. FAST: fast architecture sensitive tree search on modern CPUs and GPUs.
In Proceedings of the ACM SIGMOD International Conference on Management of
Data, SIGMOD 2010, Indianapolis, Indiana, USA, June 6-10, 2010. ACM, 339–350.

[14] Andreas Kipf, Ryan Marcus, Alexander van Renen, Mihail Stoian, Alfons Kemper,
Tim Kraska, and Thomas Neumann. 2019. SOSD: A Benchmark for Learned
Indexes. NeurIPS Workshop on Machine Learning for Systems (2019).

[15] Andreas Kipf, Ryan Marcus, Alexander van Renen, Mihail Stoian, Alfons Kemper,
Tim Kraska, and Thomas Neumann. 2020. RadixSpline: a single-pass learned
index. In Proceedings of the Third International Workshop on Exploiting Artificial
Intelligence Techniques for Data Management, aiDM@SIGMOD 2020, Portland,
Oregon, USA, June 19, 2020. ACM, 5:1–5:5.

[16] Andreas Kipf and Alexander van Renen. 2020. RadixSpline: A Single-Pass Learned
Index. https://github.com/learnedsystems/RadixSpline. (accessed: 2021-11-08).

[17] Tim Kraska, Alex Beutel, Ed H. Chi, Jeffrey Dean, and Neoklis Polyzotis. 2017.
The Case for Learned Index Structures. arXiv:1712.01208v1 [cs.DB]

[18] Tim Kraska, Alex Beutel, Ed H. Chi, Jeffrey Dean, and Neoklis Polyzotis. 2018.
The Case for Learned Index Structures. In Proceedings of the 2018 International
Conference on Management of Data, SIGMOD Conference 2018, Houston, TX, USA,
June 10-15, 2018. ACM, 489–504.

[19] Viktor Leis, Alfons Kemper, and Thomas Neumann. 2013. The adaptive radix
tree: ARTful indexing for main-memory databases. In 29th IEEE International
Conference on Data Engineering, ICDE 2013, Brisbane, Australia, April 8-12, 2013.
IEEE Computer Society, 38–49.

[20] Ryan Marcus. 2019. RMI: The recursive model index, a learned index structure.
https://github.com/learnedsystems/RMI. (accessed: 2021-11-08).

[21] RyanMarcus, Andreas Kipf, and Alexander van Renen. 2019. SOSD: A Benchmark
for Learned Indexes. https://github.com/learnedsystems/SOSD. (accessed: 2021-
11-08).

[22] Ryan Marcus, Andreas Kipf, Alexander van Renen, Mihail Stoian, Sanchit Misra,
Alfons Kemper, Thomas Neumann, and TimKraska. 2020. Benchmarking Learned
Indexes. Proc. VLDB Endow. 14, 1 (2020), 1–13.

[23] Ryan Marcus, Emily Zhang, and Tim Kraska. 2020. CDFShop: Exploring and
Optimizing Learned Index Structures. In Proceedings of the 2020 International
Conference on Management of Data, SIGMOD Conference 2020, online conference
[Portland, OR, USA], June 14-19, 2020. ACM, 2789–2792.

[24] Thomas Neumann. 2017. The Case for B-Tree Index Structures.
http://databasearchitects.blogspot.com/2017/12/the-case-for-b-tree-index-
structures.html. (accessed: 2021-11-08).

[25] Andrew Pavlo, Gustavo Angulo, Joy Arulraj, Haibin Lin, Jiexi Lin, Lin Ma,
Prashanth Menon, Todd C. Mowry, Matthew Perron, Ian Quah, Siddharth San-
turkar, Anthony Tomasic, Skye Toor, Dana Van Aken, Ziqi Wang, Yingjun Wu,
Ran Xian, and Tieying Zhang. 2017. Self-Driving Database Management Sys-
tems. In 8th Biennial Conference on Innovative Data Systems Research, CIDR 2017,
Chaminade, CA, USA, January 8-11, 2017, Online Proceedings. www.cidrdb.org.

[26] C++ Reference. 2000. cppreference.com: std::lower_bound. https://en.
cppreference.com/w/cpp/algorithm/lower_bound. (accessed: 2021-11-08).

[27] Mihail Stoian and Andreas Kipf. 2021. CHT: Implementation of the compact
"Hist-Tree". https://github.com/stoianmihail/CHT. (accessed: 2021-11-08).

[28] Giorgio Vinciguerra. 2019. PGM-index: State-of-the-art learned data structure.
https://github.com/gvinciguerra/PGM-index. (accessed: 2021-11-08).

[29] Lucas Woltmann, Claudio Hartmann, Maik Thiele, Dirk Habich, and Wolfgang
Lehner. 2019. Cardinality estimation with local deep learning models. In Pro-
ceedings of the Second International Workshop on Exploiting Artificial Intelligence
Techniques for Data Management, aiDM@SIGMOD 2019, Amsterdam, The Nether-
lands, July 5, 2019. ACM, 5:1–5:8.

https://dawn.cs.stanford.edu/2018/01/11/index-baselines/
https://dawn.cs.stanford.edu/2018/01/11/index-baselines/
https://github.com/tlx/tlx
https://github.com/microsoft/ALEX
https://learnedsystems.github.io/SOSDLeaderboard
https://github.com/learnedsystems/RadixSpline
https://arxiv.org/abs/1712.01208v1
https://github.com/learnedsystems/RMI
https://github.com/learnedsystems/SOSD
http://databasearchitects.blogspot.com/2017/12/the-case-for-b-tree-index-structures.html
http://databasearchitects.blogspot.com/2017/12/the-case-for-b-tree-index-structures.html
https://en.cppreference.com/w/cpp/algorithm/lower_bound
https://en.cppreference.com/w/cpp/algorithm/lower_bound
https://github.com/stoianmihail/CHT
https://github.com/gvinciguerra/PGM-index

	Abstract
	1 Introduction
	2 Recursive Model Indexes
	2.1 Core Idea
	2.2 Index Lookup
	2.3 Training Algorithm
	2.4 Hyperparameters

	3 Related Work
	3.1 Learned Indexes
	3.2 Experiments and Analysis

	4 Experimental Setup
	4.1 Implementation
	4.2 Hyperparameters
	4.3 Datasets
	4.4 Workload
	4.5 Baselines

	5 Predictive Accuracy Analysis
	5.1 Segmentation
	5.2 Position Prediction
	5.3 Error Bounds

	6 Lookup Time Analysis
	6.1 Model Types
	6.2 Error Correction

	7 Build Time Analysis
	8 RMI Guideline
	9 Comparison with Other Indexes
	9.1 Lookup Time
	9.2 Build Time

	10 Conclusion and Future Work
	References

