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Abstract—In nature, many species became extinct as they
could not adapt quickly enough to their environment. They were
simply not fit enough to adapt to more and more challenging
circumstances. Similar things happen when algorithms are too
static to cope with particular challenges of their “environment”,
be it the workload, the machine, or the user requirements.
In this regard, in this paper we explore the well-researched
and fascinating family of adaptive indexing algorithms. Classical
adaptive indexes solely adapt the indexedness of the data to the
workload. However, we will learn that so far we have overlooked
a second higher level of adaptivity, namely the one of the indexing
algorithm itself. We will coin this second level of adaptivity
meta-adaptivity.

Based on a careful experimental analysis, we will develop an
adaptive index, which realizes meta-adaptivity by (1) generalizing
the way reorganization is performed, (2) reacting to the evolving
indexedness and varying reorganization effort, and (3) defusing
skewed distributions in the input data. As we will demonstrate,
this allows us to emulate the characteristics of a large set
of specialized adaptive indexing algorithms. In an extensive
experimental study we will show that our meta-adaptive index
is extremely fit in a variety of environments and outperforms a
large amount of specialized adaptive indexes under various query
access patterns and key distributions.

I. INTRODUCTION

An overwhelming amount of adaptive indexing algorithms
exists today. In our recent studies [1], [2], we analyzed 8 pa-
pers including 18 different techniques on this type of indexing.
The reason for the necessity of such a large number of
methods is that adaptivity, while offering many nice properties,
introduces a surprising amount of unpleasant problems [1],
[2] as well. For instance, as the investigation of these works
showed, adaptive indexing must deal with high variance, slow
convergence speed, weak robustness against different query
workloads and data distributions, and the trade-off between
individual and accumulated query response time.

In the simplest form of adaptive indexing, called database
cracking or standard cracking [3], the index column is repar-
titioned adaptively with respect to the incoming query pred-
icates. If a range query selecting [low, high) comes in, the
partition into which low falls is split into two partitions
where one partitions contains all keys less than low and the
other partition all keys that are greater than or equal to low.
The same reorganization is repeated for the partition into
which high falls. After these two steps, the range query can
be answered by a simple scan of the qualifying partitions.
The information which key ranges each partition holds is

stored in a separate index structure called cracker index. The
more queries are answered this way, the more fine granular
the partitioning becomes. By this, the query response time
incrementally converges towards the one of a traditional index.
Figure 1 visualizes the concept.
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Fig. 1: Concept of database cracking reorganizing for multiple
queries and converging towards a sorted state.

If we inspect the literature [4], [5], [6], [7], [8], [9], [10]
proposing variations of the described principle, we see that
these algorithms mostly focus on reducing a single issue
at a time. For instance, hybrid cracking [5] tries to im-
prove the convergence speed towards a full index. Stochastic
cracking [4] instead focuses on improving the robustness on
sequential query workloads. Thus, to equip a system with
adaptive indexing, it actually has to be extended with numer-
ous different implementations that must be switched depending
on the needs of the user and the current workload.

This raises the question of how different these algorithms
really are. During the study of the literature we made two
observations: First, at the heart of every cracking algorithm is
simple data partitioning, splitting a given key range into a cer-
tain number of partitions. Second, the main difference between
the algorithms lies in how they distribute their indexing effort
along the query sequence. Some methods tend to reorganize
mostly early on, while others balance the effort as much as
possible across the queries. Based on these observations, we
will present a generalized adaptive indexing algorithm that
adapts itself to the characteristics of specialized methods,
while outperforming them at the same time.
(1) Generalize the way of index refinement. We identify
data partitioning as the common form of reorganization in
adaptive indexing. Various types of database cracking as well
as sorting can be expressed via a function partition-in-k that



produces k disjoint partitions. For instance, we can emulate
standard cracking (respectively crack-in-two) using k = 2,
while sorting on 64-bit keys can be expressed using the fan-
out k = 264. Consequently, partition-in-k will be the sole
component of reorganization in our algorithm, realized using
both in-place and out-of-place versions of highly efficient radix
partitioning techniques.
(2) Adapt the reorganization effort by adjusting the parti-
tioning fan-out k with respect to the size of the partition to
work on. Classical approaches keep their reorganization effort
static during their lifetime. For instance, crack-in-two splits its
input always into two parts, independent of the partition size
and the state of the index. However, the reorganization effort
should be carefully adapted to the input to refine the index as
much as possible in an individual step without deteriorating the
query response time. To achieve this, we perform the following
strategy: with a decrease in size of the input partition that has
to be refined, we increase the fan-out k of partition-in-k. Thus,
we exploit the decrease in reorganization effort and reorganize
more fine-granular to speed up the convergence while ensuring
fast response times. Consequently, if a partition reaches a
sufficiently small size, we “finish” it via sorting, also enabling
interesting orders on the data.
(3) Identify and defuse skewed key distributions and adjust
the reorganization mechanism accordingly to counter them.
By default, radix partitioning creates balanced partitions only
if the key distribution is uniform. While uniformity is often
present, it is careless to rely on it. Thus, we introduce a
mechanism that is able to defuse the problems caused by
the presence of skew in the very first query already. We
achieve two things: First, we are able to detect skew in the
input without overhead. Second, in the presence of skew, we
recursively split partitions that are way larger than the average
to enforce a balanced processing of subsequent queries.

Following these three simple concepts, we are able to
emulate a large set of specialized adaptive indexing algorithms.
Via seven configuration parameters, our general algorithm can
be specialized to focus on properties such as convergence
speed, variance reduction, or the resistance towards skew, and
thus it can emulate and possibly replace a large number of
specialized indexes. We will generate method signatures to
visualize the quality of our emulation. Apart from applying
manual configurations, we will use simulated annealing to
optimize the parameter set towards the minimal accumulated
query response time for a given workload. Let us now see how
we can realize such a meta-adaptive algorithm.

II. GENERALIZING INDEX REFINEMENT

Simple data partitioning is at the core of any adaptive in-
dexing algorithm. The applied fan-out of the partitioning pro-
cess dictates the characteristics of the method by influencing
convergence speed, variance, and distribution of the indexing
effort. Thus, an algorithm that is able to set the fan-out of the
partitioning procedure freely is able to adapt to the behavior of
various adaptive indexing algorithms. Consequently, we will
solely use a partition-in-k step to perform the reorganization.

Apart from the used partitioning fan-out, the actual imple-
mentation of partition-in-k plays an important role. Classical
approaches mostly rely on comparison-based methods, as
they partition the keys with respect to the incoming query
predicates. We decided to use a radix based partitioning
algorithm as this type of reorganization method offers a higher
partitioning throughput than comparison-based methods [11].
Of course, in contrast to comparison based methods, radix
based partitioning does not generate partitions with respect
to the given predicates, and thus, filtering the generated
partitions for qualifying entries is required. Still, considering
the performance advantage, this is a price worth paying.

Further, we have to distinguish between the very first query,
which can utilize an out-of-place partitioning algorithm, and
subsequent queries, where the index column is reorganized
solely in-place. In the former case, we can use a highly
optimized out-of-place radix partitioning, that has shown its
superior performance already in our study [12]. It enhances
the partitioning process using software-managed buffers, non-
temporal streaming stores, and an optimized micro-layout. In
the latter case, we use an in-place radix partitioning algorithm,
that swaps elements between partitions in a cuckoo-style
fashion [13], without the need of additional memory. Both
algorithms together build the core of reorganization in our
meta-adaptive index and will be presented in detail in the next
section.

III. ADAPTING REORGANIZATION EFFORT

With a look at the previous section, it remains the question
of how to steer the amount of reorganization. When should we
invest how much into partitioning? To approach this question,
we will run a set of experiments to investigate the impact
of varying fan-outs on the partitioning process in different
situations. We have to distinguish between the very first
query, which can exploit out-of-place partitioning, and the
remaining ones, which reorganize in-place. Further, we have
to distinguish between different input partition sizes, as they
highly influence the required cost of reorganization. Let us
start by looking solely on the first query.

A. Data Partitioning in the Very First Query

For the very first query, we analyze the runtime of the out-
of-place partitioning of 100 million entries of 8B key and 8B
rowID. The used machine is a mid-range server that we also
use in the experimental evaluation later on (see Section VIII-A
for a detailed description). Thus, in total, around 1.5GB of
data must be moved. The keys are picked in a uniform
and random fashion from the entire unsigned 64-bit integer
range. We reorganize for a single range query [low, high),
where the low predicate splits the key range into partitions
of size 1/3 and 2/3 of the data size. The high predicate
splits the partition of size 2/3 subsequently into two equal
sized partitions. To reorganize for this query we consider two
options: The classical way (as employed by standard cracking)
is to partition the data out-of-place into two partitions with
respect to low and then to perform in-place crack-in-two on
the upper partition with respect to high. The created middle
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(a) Reorganization for the very first query. Standard cracking
performs an out-of-place crack-in-two step with respect to predi-
cate low and an in-place crack-in-two step with respect to high.
In comparison, we show out-of-place radix partitioning as presented
in [12] under a varying fan-out of 4 to 32,768.
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(b) Reorganization for a subsequent query. We test the partition input
sizes 32KB (L1 cache), 256KB (L2 cache), 2MB (HugePage), and 10MB
(L3 cache). For in-place radix partitioning, we show fan-outs of 4, 32, and
512 as representatives.

Fig. 2: Comparison of reorganization options for a range query selecting [low, high). We have to distinguish between the very
first query (Figure 2(a)), where the keys are copied from the base table into the index column, and subsequent queries (Figure 2(b)),
that reorganize in-place. We test the strategy applied by standard cracking and compare it with radix partitioning.

partition answers the query. As an alternative, since we have
to copy the entire column anyway, we can ignore the query
predicates and instead directly partition the data out-of-place
using our highly optimized radix based method [12] with a
custom fan-out. Although this form of reorganization requires
additional filtering to answer the query, it is a valid alternative
as the partitions to filter are small for reasonable fan-outs.

1) Out-of-place Radix Partitioning: Let us have a look
at how our out-of-place radix partitioning algorithm [12]
precisely works. As input, the algorithm gets the source
column as well as the requested number of partitions. As
output, it produces the partitioned data in a (freshly allocated)
destination column. The algorithm works in two passes: in
the first pass, we scan the input and count how many entries
will go into each partition. Based on this histogram, we
initialize pointers to fill the partitions. In the second pass, we
perform the actually partitioning by copying the entries into
the designated partitions. Unfortunately, naively copying the
entries from the base table into the partitions in the second
pass can become quite costly for partitioning fan-outs larger
than 32 [12]. As we write into the destination partitions in
a random fashion, TLB misses are triggered if we partition
into more than 32 partitions (since the CPU can cache only
32 address translations for huge pages). To overcome this
problem, we employ a technique called software-managed
buffers. Figure 3 visualizes the concept at an example that
partitions into k = 4 partitions. Instead of writing entry 36

directly to the second partition, we first write it into the
second buffer. The buffer for each partition has a size of
b = 2 entries. Only if a buffer becomes full, i.e. after 42

has been written to it, we flush it in one go to the respective
partition. As the buffers are likely to fit into the CPU caches,

we effectively reduce the number of trips to main memory and
thus the number of TLB misses by a factor of b. Although this
technique doubles the amount of copied data, the reduction of
TLB misses significantly reduces the runtime over the naive
approach [12].
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Fig. 3: Out-of-place partitioning using software managed
buffers [12].

Additionally, we apply so called non-temporal streaming
stores. These SIMD intrinsics allow to bypass the CPU caches
when flushing the software-managed buffers to the destination
partitions. Figure 4 shows the concept. To flush a single
buffer of one cache-line, two calls to the AVX intrinsic
_mm256_stream_si256 are necessary, where each call writes
half a cache-line. Internally, these two calls actually trigger
the writing of the cache-line in one go as the CPU performs
hardware write-combining.

Using these optimizations, we are able to significantly
reduce the pressure on caches and TLB during partitioning. Let
us now see how this optimized out-of-place radix partitioning
algorithm performs in comparison with crack-in-two.
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Fig. 4: Enhancing software managed buffers using non-
temporal streaming stores [12].

2) Evaluation: In Figure 2(a) we test fan-outs from 4 to
32,768 for out-of-place radix partitioning. Interestingly, we
are able to create a vast amount of partitions using radix
partitioning with only slightly higher costs as two times
crack-in-two which creates only three. For instance, creating
512 partitions is only 1.45x slower (respectively half a second
slower) than creating three partitions using two times crack-
in-two. At the same time, creating 512 partitions builds an
index that is 170 times more fine granular than an index with
only three partitions. Besides, for 512 generated partitions, the
average partition size is around 3MB and thus easily fits into
the L3 cache of the CPU when being processed in subsequent
queries. In contrast to that, in the case of two times crack-in-
two, each partition is still 500MB large. In total, the strategy
for the very first query is clear: Create a significantly larger
number of partitions than standard cracking (creating only
three partitions) with negligible overhead and consequently
reduce the average partition size drastically.

B. Data Partitioning in Subsequent Queries

But how to continue for subsequent queries? First of all,
since the data is now present in the index column, we can
no longer use an out-of-place partitioning algorithm as in
the first query. Instead, any reorganization must happen in-
place. To evaluate the options, we again reorganize for a range
query [low, high). We consider the case where the low and
the high predicate fall into two different partitions, each of
size s, where s equals a characteristic system size (size of L1,
L2, Hugepage, and L3).

Standard cracking invests the least amount of work to an-
swer the query: two times in-place crack-in-two, reorganizing
the two partitions according to low respectively high. In
comparison, we evaluate again a radix based partitioning,
but now in form of the in-place version. We apply in-place
radix partitioning with a given fan-out to the two partitions
into which the low and high predicates fall. For our test we
pick a small, a medium, and a high fan-out with 4, 32, and
512 partitions respectively.

1) In-place Radix Partitioning: Let us see how the in-place
of radix partitioning works. As in the out-of-place version,
a histogram generation phase is required, where we count
how many entries go into each of the k partitions. With this
information, we can determine the start of each partition. Now,
we scan partition p0 from the beginning and identify the first

entry x that does not belong to partition p0, but actually to
another partition, let’s say p5. Then, we scan partition p5 until
we find the first entry y that does not belong to p5. We replace
y by x and continue the procedure of search and replace with
entry y. This is done until we close a cycle by filling the hole
that x left behind in partition p0. We perform these cycles of
swapping until all partitions contain the right entries.

2) Evaluation: In Figure 2(b), we can see that two times in-
place crack-in-two is again the cheapest option. However, we
can also observe that with a decrease in input size the absolute
difference between the two tested methods decreases. While
for 10MB creating 512 partitions using radix partitioning is
still around 10ms more expensive than reorganizing into two
partitions using crack-in-two, for 2MB it is only around 1.5ms
more expensive. In other words, the smaller the input the more
negligible the overhead of partitioning with higher fan-outs
over cracking becomes. This gives us a strong hint on how
we should adapt the partitioning fan-out k during the query
sequence: With a decrease in partition size, increase the
fan-out k. At a sufficiently small size, finish the partition
by sorting it as the cost is negligible.

C. Adapting the Partitioning Fan-out

The conducted experiments of Section III-A and Sec-
tion III-B indicate that the initial reorganization step can
create a large number of partitions without deteriorating the
runtime in comparison to lightweight methods. The remaining
reorganization steps should adapt their effort with respect to
the given partition size. Thus, let us now discuss how exactly
we adaptively set the partitioning fan-out in the different
situations we encounter. We can summarize our strategy in
the following function f(s, q), that receives the size s of the
partition to reorganize, as well as the query sequence number q
as an argument, and returns the number of bits by which
the input should be partitioned. We coin this return value
the number of fan-out bits, i.e. the actual partitioning fan-
out k = 2(fan-out bits) = 2f(s,q). The function depends on a set
of parameters that configure the meta-adaptivity.

f(s, q) =


bfirst if q = 0

bmin else if s > tadapt

bmin +
⌈
(bmax − bmin) ·

(
1 − s

tadapt

)⌉
else if s > tsort

bsort else.

We realize the following high-level design goals in this func-
tion: (1) Treat the first query different than the remaining ones.
(2) Increase the granularity of reorganization with a decrease
of input partition size. (3) Finish the input partition by sorting
it at a sufficiently small size.

Based on our observations of Figure 2(a) and Figure 2(b),
we distinguish between the very first query and the remaining
ones. If we are in the first query (q = 0), the function
returns a manually set number of fan-out bits determined by
the parameter bfirst. If we are in a subsequent query, we
first compare the partition size s with the threshold tadapt.
If s > tadapt we return the minimal amount of fan-out
bits bmin, as the partition is still considered as too large for
the application of higher partitioning fan-outs. If s is smaller



or equals than tadapt, but still larger than the threshold for
finishing the partition tsort, we adaptively set the fan-out bits
between bmin and bmax. The smaller the partition, the higher
is the returned number of fan-out bits. If s is smaller or
equals than tsort the function finishes the partition by returning
the maximal number of fan-out bits bsort (e.g. 64 for 64-bit
keys), which leads to a sorting of the partition. In total, the
function f(s, q) allows us to realize the strategies for adaptive
partitioning which we discussed in the previous sections.
Figure 5 visualizes the generated number of fan-out bits for
a sample configuration. As we can see, the function smoothly
adapts the number of generated fan-out bits to the size s
of the input partition. Besides, we limit the reorganization
using partition-in-k to partitions into which the current query
predicates fall. In this regard, the reorganization is still focused
on partitions of interest.
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Fig. 5: The partitioning fan-out bits returned by f(s, q) for
partition sizes s from 0MB to 80MB and q > 0 with tadapt =
64MB, bmin = 2, bmax = 10, tsort = 2MB, and bsort = 64.

IV. HANDLING SKEW

As mentioned in Section II, we prefer a radix-based par-
titioning over a comparison based partitioning due to the
runtime advantages offered by the former one. However, while
radix-based partitioning offers a very fast way of assigning
entries to their partitions, a valid argument against its use is
that it performs badly when confronted with highly skewed key
distributions. Skewed key distributions lead to the generation
of non-uniform partition sizes, which can drastically limit the
gain in index quality of a partitioning step. Extreme cases such
as the Zipf distribution, where the most frequent key occurs
around twice as often as the second most frequent key and so
on, require the generation of so called equi-depth histograms
to balance the partitions.

In our meta-adaptive index we address the problem of highly
skewed data by introducing our own best effort equi-depth out-
of-place radix partitioning algorithm, that is applied for the
very first query. Traditionally, equi-depth partitioning only has
to deal with computing equal sized partitions [14]. However,
our solution also has to deal with the problem that further
radix partitioning steps should still remain possible on said
partitions. In other words, the boundaries of the generated
partitions must split at radix bits. Therefore we cannot simply
adapt a solution where we split and merge partitions on
arbitrary keys [15] such that their sizes equalize. Instead we
have to chose the partition keys according to the radix bits.

Our solution works as presented in Figure 6: First, we
assume that the keys in the input column are uniform. There-
fore, we build the initial histogram in phase 1 of the out-
of-place partition-in-k algorithm as usual, using bfirst many

bits. Subsequently, we iterate over the newly build histogram
and compare the size of each bucket against the theoretical
optimum (columnsize/k) ∗ skewtol. Here, skewtol denotes
the skew tolerance which gives the user control over the skew
detection. Once a partition exceeds this threshold it is marked
as skewed by the algorithm. In phase 2, we perform the out-
of-place radix partition-in-k as normal with respect to the
histogram built in phase 1. However, while we are copying
tuples into their corresponding partitions, we simultaneously
build new histograms on the partitions marked as skewed
using bmin many bits. Thus, we piggy-back the histogram
generation of the next partitioning phase onto the current
out-of-place partitioning step. Once we have completed the
out-of-place partitioning step, we have already generated this
initial partitioning as well as the new histograms. Therefore,
in phase 3, we iterate over all skewed partitions and further
partition them in-place with respect to bmin many bits using
the already build histograms of phase 2. Finally, we insert all
the partitioning information into the index.
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Fig. 6: Defusing of input skew. In phase 1, we build a his-
togram on the input with respect to bfirst many bits and locate
the skewed partitions. In phase 2, we partition the input out-of-
place into the index column based on the histogram of phase 1
while building new histograms only on the skewed partitions
with respect to bmin many bits. In the final phase 3, we partition
the skewed partitions in-place inside the index column based on
the histograms of phase 2.

Using such an approach has mainly two benefits: First, if the
keys in the input column are not skewed, then the performance
of the equi-depth radix partitioning basically equals the one
of the standard radix partitioning algorithm, as the piggy-
backed histogram creation comes almost for free. Second, if
the input column is heavily skewed in a certain region, then
the “resolution” of the radix partitioning is further increased
in that region. Of course, this approach does not guarantee
a perfectly uniform partitioning in any case. However, as we
will see in the experiments, it offers a practical and lightweight
method to defuse severe negative impact caused by skewed
distributions.



V. CONFIGURATION KNOBS

We have seen in the previous sections how the reorganizing
procedure can be generalized (Section II), how the fan-out of
partitioning is adapted (Section III) and how input skew is
handled (Section IV). Along with that, we introduced a set
of parameters that allow us to tweak the configuration of the
algorithm towards the priorities of the user, the capabilities of
the system, and the characteristics of existing adaptive indexes.
Table I lists them again alongside with their meaning.

TABLE I: Available parameters for configuration.

Parameter Meaning
bfirst Number of fan-out bits in the very first query.
tadapt Threshold below which fan-out adaption starts.
bmin Minimal number of fan-out bits during adaption.
bmax Maximal number of fan-out bits during adaption.
tsort Threshold below which sorting is triggered.
bsort Number of fan-out bits required for sorting.
skewtol Threshold for tolerance of skew.

Of course, all these parameters can be set manually by the user
according to the individual preferences. In Section VIII-B, we
will setup the parameters to emulate characteristics of individ-
ual adaptive indexes. This shows that our meta-adaptive index
is general enough to emulate existing adaptive indexes and
thus is able to replace them. Further, we will demonstrate how
to calibrate the parameters manually (see Section VIII-C1) and
automatically using simulated annealing (see Section VIII-D1)
to acquire a setup that aims at minimizing the accumulated
query response time.

VI. META-ADAPTIVE INDEX

As we have discussed the core topics of meta-adaptivity, we
are now able to assemble all components in one single method
— our meta-adaptive index. The primary goal is to include
all discussed aspects while keeping the algorithm as simple
and lightweight as possible. Algorithm 1 presents the pseudo-
code of the it, which represents the logic by which we decide
how to reorganize the index under incoming queries. Similar
to the adaptive indexing algorithms known in the literature,
our meta-adaptive index treats each query independently. As
before, we denote the two predicates of a range-query as
low and high and use the terms p[low] and p[high] for
the partitions, into which the respective predicates currently
fall. Each query is now processed according to the same
procedure, except of the initial one. For the very first query,
the input has to be copied from the base table into a separate
index column. Therefore, the algorithm employs out-of-place
partition-in-k using k = 2f(s,0) = 2bfirst (see Section III for
details) in order to copy over the data while also piggybacking
partitioning work in the mean time (line 7). The created
partition boundaries are inserted into the index. During the out-
of-place partition-in-k, the aforementioned skew detection is
performed as well (see Section IV for details). In case of skew
in the distribution, an in-place partition-in-k using k = 2bmin

is applied on the partitions which are significantly larger than
the average partition size.

The output for the first query is then obtained via querying
the updated index for the newly created p[low] and p[high]

1 META_ADAPTIVE_INDEX(table, queries) {
2 // initialize empty index column
3 initializeEmptyIndex()
4 // process first query
5 // out-of-place partition,
6 // handle possible skew, and update index
7 oopPartitionInK(table, f(table.size, 0))
8 // answer query using filtering and scanning
9 // find border partitions

10 p[low] = getPartitionFromIndex(queries[0].low)
11 p[high] = getPartitionFromIndex(queries[0].high)
12 // determine result for lower, mid, upper partitions
13 filterGTE(p[low].begin, p[low].end, queries[0].low)
14 scan(p[low].end, p[high].begin)
15 filterLT(p[high].begin, p[high].end, queries[0].high)
16 // process remaining queries
17 for(all remaining queries q) {
18 // get query predicates
19 low = queries[q].low;
20 high = queries[q].high;
21 // find border partitions
22 p[low] = getPartitionFromIndex(low)
23 p[high] = getPartitionFromIndex(high)
24 // try to refine the largest partition first
25 if(p[low] is not finished) {
26 ipPartitionInK(p[low], f(p[low].size, q))
27 updateIndex()
28 }
29 // try to refine the smaller partition
30 if(p[high] is not finished) {
31 ipPartitionInK(p[high], f(p[high].size, q))
32 updateIndex()
33 }
34 // answer query using filtering and scanning
35 // find refined border partitions
36 p[low] = getPartitionFromIndex(low)
37 p[high] = getPartitionFromIndex(high)
38 // result for lower partition
39 if(p[low] is finished)
40 scan(binSearch(p[low], low), p[low].end)
41 else
42 filterGTE(p[low].begin, p[low].end, low)
43 // middle
44 scan(p[llow].end, p[high].begin)
45 // result for upper partition
46 if(p[high] is finished)
47 scan(p[high].begin, binSearch(p[high], high))
48 else
49 filterLT(p[high].begin, p[high].end, high)
50 }
51 }

Algorithm 1: Pseudo-code of the meta-adaptive index.
Note that for simplicity, this code does not cover the case
where two predicates fall into the same partition. The
actual implementation covers this case.

partitions (lines 10 and 11), post-filtering said partitions
(lines 13 and 15), and applying a scan to the region in-between
(line 14). Please note that for simplicity, we do not discuss
the cases where p[low] = p[high]. Of course, our actual
implementation is aware of this case. Subsequent queries are
processed very differently: First, the algorithm again queries
the index for p[low] and p[high] (lines 22 and 23) to identify
the partitions on which we want to limit the reorganization
done by this query. Now, we first check for p[low] whether
the partition is already finished respectively sorted or not
(line 25). If it is already finished, then no additional indexing
effort needs to be spent on that partition. If however, the
partition is not yet finished then additional effort needs to
be invested. We call the fan-out function f(s, q) with the
size s of the partition p[low] and the current query sequence



number q to determine which fan-out to apply for the in-place
partition-in-k step and perform the reorganization (line 26).
Subsequently, the same process is repeated for the p[high]
partition (lines 30 and 31). Finally, we have to obtain the query
output. We first re-inspect the index for the updated p[low] and
p[high] partitions (lines 36 and 37). Note that in contrast to
e.g. standard cracking, the existing partition boundaries do not
necessarily split at the given query predicates low and high.
Thus, we have to filter the boundary partitions in case they
are not finished yet. If they are finished, we can apply binary
search and scanning on them (line 40 and 47). If they are not
yet finished, we apply simple filtering (line 42 and 49). On
the partitions in between, we use a simple scan (line 44), as
they belong to the query result entirely.

VII. BACKGROUND AND BASELINES

Before we put our meta-adaptive index experimentally
under test against the state-of-the-art adaptive indexing al-
gorithms that are present out there, let us recap the most
prominent literature in the field. The most representative
algorithms will serve as baselines for our meta-adaptive index
in the following experimental evaluation.

Standard Cracking [3]: Of course, we compare the meta-
adaptive index against the most lightweight form of database
cracking (DC). It offers the cheapest upfront initialization
and performs the least amount of reorganization per query
to answer it using a scan. It performs very well under uniform
random and skewed query distributions but it is prone to
sequential workloads. Figure 7(a) visualizes the concept with
an example. Let us say a query comes in that selects all
entries greater than or equal to 10 and less than 14. In
Standard Cracking, two times crack-in-two are applied using
the given query predicates. This means, the index column
is first partitioned with respect to 10. Then, the upper half
containing all entries greater than or equal to 10 are partitioned
with respect to 14. The information about the key ranges and
the split lines is stored in a separated cracker index. Of course,
subsequent queries partition only the areas into which the
query predicates fall.

Stochastic Cracking [6]: The class of stochastic cracking
algorithms aims at solving the major problem of the standard
version, namely sequential query patterns. It is robust against
various workloads as it decouples reorganization from the
query predicates to a certain degree and introduces random-
ness. Various different forms of stochastic cracking exist — in
this work, we will use DD1R as the baseline, which introduces
one random crack per query, additionally to the reorganization
done with respect to the predicates (see Figure 7(b)).

Hybrid Cracking [5]: The class of hybrid cracking al-
gorithms aims at improving the convergence speed towards
the fully sorted state. As with stochastic cracking, there are
various different forms of hybrid cracking as well. In this
work, we will inspect the most prominent forms called hybrid
crack sort (HCS) and hybrid sort sort (HSS). As shown in
Figure 7(c), hybrid cracking splits the input non-semantically
into chunks (two in the example) and applies standard cracking

for HCS, and sorting for HSS, on each chunk separately. Then,
the qualifying entries of each chunk are merged and sorted in
a final partition from which the query is answered.

Additionally, we evaluate the extremes Sort + Binary
Search (full index, see Figure 7(d)) and Scan (no index,
see Figure 7(e)). Please note that not all of the following
evaluations and comparisons shows all baseline methods. We
limit the presented investigation to those methods that are
characteristic and that do not overload the visualization.

VIII. EXPERIMENTAL EVALUATION

With the algorithm at hand, let us now see how our meta-
adaptive index competes with the state-of-the-art methods in
the field. We basically split the evaluation into two parts:
In the first part, we evaluate whether our index can indeed
emulate and possibly replace specialized adaptive indexes.
To do so, we configure the meta-adaptive index to fit to the
characteristics of other indexes and compare the signatures
one by one. This evaluates whether the previously described
generalization works and whether our meta-adaptive index is
capable of replacing existing adaptive indexes. In the second
part, we compare our meta-adaptive index with the baselines
in terms of individual and accumulated query response time.
We test both a manual configuration as well as configurations
calibrated using simulated annealing.

A. Test Setup

The system we use throughout all the experiments consists
of two Intel(R) Xeon(R) CPU E5-2407 @ 2.2 GHz with 32KB
of L1 cache, 256KB of L2 cache, and 10MB of a shared L3
cache. 24GB of DDR3 ram are attached to each of the two
NUMA regions. The operating system used in the experiments
is a 64-bit Debian GNU/Linux 8 with kernel version 3.16,
configured to automatically use Transparent Huge Pages of
size 2MB. The TLB can cache 32 virtual to physical address
translations for huge pages. The program is compiled using
g++ version 4.8.4 with switches -msse -msse2 -msee3 -
msse4.1 -msse4.2 -mavx -O3 -lrt. We repeat each experimental
run three times and report the average.

The index column we use in the following experimental
evaluation consists again of 100 million entries, where each
entry is composed of a 8B key and a 8B rowID. Therefore
the total data size of the index column is about 1.5GB. In
total, we use three characteristic key distributions in our tests:
First, a uniform distribution generating uniform keys between
0 and 264 − 1. Second, a normal distribution with a mean of
263 and a standard deviation of 261. And third, a (modified)
Zipf distribution with a range of 0 to 264 − 1 and a shape
of α = 0.6. To generate that distribution we first compute
the frequencies for 10000 different values, following a Zipf
distribution. Then, we split the unsigned 64-bit key range into
10000 equal sized parts and pick from each range as many
keys as given by the previously calculated frequencies in a
uniform and random fashion. Figure 8 visualizes the three
distributions. The order of individual entries was randomized
after workload generation using random shuffling.
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Fig. 7: Answering the query SELECT A FROM R WHERE A >= 10 AND A < 14 using six different baseline methods.
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Fig. 8: Different key distributions used in the experiments.

The query workload we use in the experiments consists of
1000 range queries, each consisting of two 8B keys describing
the lower respectively upper bound. To generate the individual
queries, we use the workload patterns that have been described
in [4] in detail. In Figure 9 we visualize these patterns. We
use a fixed selectivity of 1% as common in the literature [1],
which has two positive effects on the evaluation: First, such
a higher selectivity challenges the convergence capabilities of
the algorithms, as both cracks of a range query are located
close to each other. Second, for a selectivity of 1% the
querying time does not overshadow the cracking time.
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Fig. 9: Different query workloads. Blue dots represent the
high keys whereas red dots represent the low keys.

B. Emulation of Adaptive Indexes

Let us now first see whether the meta-adaptive index is
capable of generalizing the principle of adaptive indexing.
One main motivation of our algorithm was to replace the vast
amount of existing adaptive indexes by a single method that
can be configured to emulate different characteristics. In this
section, we will evaluate whether this can be achieved and
how the meta-adaptive index must be configured to emulate
representative existing adaptive indexes. As baselines for the
evaluation, we pick the signatures of four characteristic adap-
tive indexes, as presented in [1]. For a given query of the query
sequence (x-axis) the plot of Figure 10 shows the amount of
invested indexing effort (y-axis) that has been performed up
to this query. We show the amount of indexing effort relative

to the total indexing effort (indexing progress) and the queries
relative to the total query sequence (querying progress). By
this, we see for instance clearly that coarse-granular index,
which pre-partitions the index in the first query with 1000
random cracks before applying standard cracking, performs
90% of its indexing progress already in the very first query,
while standard cracking needs half of its querying progress to
invest that much.

Additionally to the adaptive indexes, we look at the
signatures of Scan and of Quick Sort + Binary Search as
representatives of the extreme cases using no index at all
or a fully evolved index. All baseline signatures in the top
row of Figure 10 originate from the work of [1], where we
generated them using uniformly distributed keys and queries,
where each query selects 1% of the data. In the bottom row
of Figure 10, we show the corresponding signatures of our
meta-adaptive index. For each baseline method we configure
the meta-adaptive index in a way to emulate its characteristics
as much as possible. Our technique is configured entirely via
the configuration parameters, as discussed in Section V and
works on uniformly distributed keys and random range queries
(see UNIFORM respectively RANDOM in Section VIII-A).

We start with standard cracking as the classic representa-
tive of adaptive indexing. To emulate its behavior, we fix all
fan-out bits to bfirst = bmin = bmax = 1. Like this every
reorganization emulates crack-in-two and no adaption of the
partitioning fan-out is performed. The sorting threshold tsort
is set to 0 such that cracking continues no matter how small
the partitions become. Using this configuration, we are able to
nearly replicate the signature and thus the behavior of standard
cracking.

Next, let us look at classical scanning and filtering. For the
baseline, the indexing stays at 0 over the entire query sequence
and the original column is processed. For the meta-adaptive
index, we are almost able to emulate that behavior. We set
all parameters to 0 such that no reorganization is happening
— except for the very first query, that copies the keys over
from the base table to a separate index column. Thus, all
the indexing effort (the copying) is done in the beginning.



Fig. 10: Emulation of adaptive indexes and traditional methods. The top row shows the signatures of the baselines from [1] in
red. The bottom row shows the signatures of the corresponding emulations of our meta-adaptive index in blue, alongside with the
parameter configurations that were used.

Subsequent queries simply scan and filter the index column
exactly as the baseline is doing it.

The other extreme is full indexing by completely sorting
the keys and then searching for the boundaries to answer the
queries. Thus, for the baseline, all indexing effort happens in
the very first query that copies and fully sorts the index entries.
Afterwards, no more indexing effort is invested. To emulate
this behavior, we set bfirst = 0 and tsort = 100M. With this
setting, the remaining parameters do not have any impact. The
first query copies the keys over into the index column. The
second query triggers the sorting of all keys as tsort is set to
the size of the entire column.

Coarse-granular index prepends a partitioning step to the
very first query and subsequently continues query answering
in the same way as standard cracking. The index is basically
bulk-loaded with 1000 partitions. To emulate this behavior,
we first set bfirst = 10. This creates 1024 partitions during
the copying from the base table into the index column.
Afterwards, we continue emulating standard cracking by set-
ting bmin = bmax = 1, leading to crack-in-two applications.
The completion threshold tsort is set to 0 to avoid the sorting
of small partitions. As we can see in Figure 10, the shapes of
the curves are quite similar — in both cases, a large portion
of the indexing effort is performed in the very first query.
For the baseline, more than 80% is invested into the initial
range partitioning — for the meta-adaptive index, only around
40%. This is simply caused by the fact that the out-of-place
radix partitioning implementation is faster than the comparison
based range-partitioning implementation that was used in [1]
and thus takes a smaller portion of the total indexing time.

Hybrid Crack Sort generates a higher convergence speed
as the results of a range query are directly sorted and subse-
quent queries can benefit. Of course, our meta-adaptive index
can not replicate the exact processing flow of the hybrid

methods. However, we can observe that this is not necessary
at all to generate a similar behavior. To do so, we first set
bfirst = bmin = bmax = 1. This guarantees that at least the
reorganization early on in the query sequence is as lightweight
as for standard cracking. However, we also set tsort = 1M.
Thus, if a partition size reaches 1% of the column size, it
is sorted. This ensures a much faster convergence than for
standard cracking. As we can see, with this configuration we
are able to emulate hybrid crack sort very well while providing
a much simpler processing flow.

Finally, let us look at another representative of the hybrid
methods, namely hybrid sort sort. In this case, sorting is
also used as the way of reorganization for the initial column.
This behavior speeds up convergence towards the fully sorted
state even more. To emulate that, we first increase the amount
of fan-out bits for the initial reorganization bfirst to 8. This
does not fully sort the column, but increases the amount of
invested indexing effort in the very first query. Second, we
set tsort = 100M such that any further access of a partition
triggers sorting. By this, we are able to closely resemble the
signature of hybrid sort sort using our meta-adaptive index.

Using proper configurations, we are able to tune the index
into one or the other direction and distribute the indexing effort
along the query sequence in different ways. The question is
now: does the ability to adapt to the characteristics of various
adaptive indexes also help in terms of query response times?

C. Individual Query Response Time
First, we focus on the individual query response time.

The main goal of basically any adaptive index is to keep
the pressure on the individual queries as low as possible.
Therefore, for instance standard cracking invests the least
amount of reorganizational work to answer a query. However,
choosing the amount of reorganizational effort per query is
not that trivial. It can pay off to penalize a single query
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Fig. 11: Individual query response times of the meta-adaptive
index (configured according to Section VIII-C1) in comparison
to baselines for a uniform (11(a)), normal (11(b)), and Zipf-
based (11(c)) key distribution. The used query workload is
RANDOM with 1% selectivity on the key range.

a bit more to significantly speed up subsequent queries. To
find out how our meta-adaptive index behaves in terms of
individual query response time, we put it to the test against
the main representatives of the different adaptive indexing
classes: standard cracking (DC), stochastic cracking (DD1R),

and hybrid crack sort (HCS). Additionally, we test sorting with
binary search. Let us now see how we can configure the index.

1) Manual Configuration: Our primary goal is to keep
the individual query response times low. The indexing ef-
fort should be nicely distributed along the query sequence.
However, we should also have the accumulated query re-
sponse time in mind as a secondary goal. Therefore, we
choose the following configuration: For the first query, we use
bfirst = 10 bits as according to Figure 2(a), higher fan-outs
make the partitioning significantly more expensive. Thus, with
individual response time in mind, 10 bits are the limit. For
subsequent queries, we balance between convergence speed
and pressure on the individual queries as well, by setting
bmin = 3 and bmax = 6. Thus, for partitions larger than
tadapt = 64MB, we keep the partitioning fan-out low as they
do not fit into the TLB. As soon as the partition is smaller
than tsort = 256KB and thus fits into the L2 cache, we sort
it. The skew tolerance is set to a high value of 5x to ensure
that severe skew is defused and moderate skew is tolerated.

2) Experimental Evaluation: Let us now inspect the indi-
vidual query response times of the meta-adaptive index in
comparison with the baselines. We focus on the RANDOM
query workload with a selectivity of 1% and test the uniform,
normal, and Zipf distributed dataset.

Let us start with the results of the uniform workload in
Figure 11(a). As we can see, the first query of the meta-
adaptive index is slightly more expensive than that of the
baselines. However, we can see that this investment certainly
pays off as from the second query on, the individual response
time dropped permanently below 10ms. In comparison to
that, all the adaptive indexing baselines show significantly
higher response times till around 100 queries and obviously
converge much slower towards the sorted state. Especially
hybrid crack sort shows very high response times even after
100 seen queries if it has to merge entries into the final
column. Overall, the meta-adaptive index shows the most
stable performance and offers early on fast individual response
times, similar to the full index. Under a normal distribution
in Figure 11(b), the very first query response times equal
pretty much the ones under the uniform distribution, where the
meta-adaptive index is only slightly slower than the baselines.
For the rest of the query sequence, we clearly see a higher
variance in response times for all methods, which is caused
by the key concentration around the middle of the 64-bit space
(263). However, only the meta-adaptive index achieves to stay
below 20ms per query for each query, while the remaining
adaptive methods cause response times that are an order of
magnitude higher till around 100 seen queries. Finally, let us
inspect the behavior under the Zipf distribution in Figure 11(c).
This workload is basically the worst case for a radix based
partitioning algorithm, as most values fall into few partitions.
Here, indeed the meta-adaptive index is around four times
slower in the first query than the three adaptive baselines. This
is due to the necessary skew handling for this highly skewed
distribution. Nevertheless, we can see that the investment pays
off: From the second query on, we stay below around 30ms



per query, while the remaining methods show the spread we
have seen previously already. Overall, we can see how well
the meta-adaptive index behaves in terms of individual query
response time under these extreme key distributions. It is able
to outperform the three main representatives of the major
adaptive indexing classes. Let us now see how it behaves in
terms of accumulated query response times.

D. Accumulated Query Response Time

To test the performance with respect to accumulated query
response time, we use again the manual configuration of
Section VIII-C1. The evaluation of the individual response
time indicated already that this configuration is also a very
valid choice in terms of accumulated time. Nevertheless, we
also want to evaluate how well an automatically generated
configuration can perform. Thus, we use simulated annealing
to come up with a configuration, that tries to optimize the
parameters with respect to accumulated response time. Thus,
let us first discuss how simulated annealing works conceptually
and how it can be applied in our case.

1) Automatic Configuration: As the parameters to configure
depend on each other, we use simulated annealing [16] to con-
firm that a particular set of parameters indeed results in short
accumulated query response times. We implement simulated
annealing as described in [17]. It is a well known technique for
approximating the global optimum of a function via stochastic
probing. The general idea is to start with an initial configu-
ration and a hot temperature. The temperature is decreased
every few steps. While the temperature continues to decrease,
the configuration is varied in every step. The magnitude of
change in the configuration depends on (1) the temperature
temp, (2) a random number r ∈ [0, 1), and (3) manually set
minimum and maximum values for the parameters to vary.
After a certain temperature threshold is reached the algorithm
stops. The final configuration is considered to be a reasonable
approximation of the global minimum.

For the initial configuration we choose the parameters based
on the manual configuration of our previous experiments. The
temperature temp is initialized to 1.0, and is reduced via
division (by a constant α) of 2.0 in this case. The number
of steps performed per temperature is set to 12, which is
twice the number of parameters to optimize (bsort is fixed
to 64 and thus not considered). The parameters to change
are chosen based on a rotation. The probability pAccept of
accepting a ”worse” configuration is set to e−(dQRT/temp),
where dQRT represents the change in accumulated query
response times. The stopping criterion is set so that the final
configuration is obtained if either temp reaches approximately
0.0 or the configuration does not change between 20 tem-
perature changes. As a quality function we simply use the
accumulated query response time of the meta-adaptive index
under the given configuration. The time to reach the final
configuration is essentially dominated by the execution of the
workload using the individual configurations. For example, for
the uniform random workload, reaching the final configuration
took 28 minutes. For each of the three key distributions, we

perform an individual simulated annealing run to obtain a
specialized configuration. In each case, we use the random
query pattern as a representative workload. Table II presents
the three obtained configurations.

TABLE II: Configuration to minimize accumulated query re-
sponse time as determined by simulated annealing.

Parameter Uniform Normal Zipf
bfirst 12 bits 10 bits 5 bits
bmin 2 bits 1 bit 3 bits
bmax 5 bits 5 bits 5 bits
tadapt 218MB 102MB 211MB
tsort 354KB 32KB 32KB
skewtol 4x 5x 5x

2) Experimental Evaluation: Let us now evaluate how our
meta-adaptive index performs with respect to accumulated
query response time under the 18 tested workloads. In Fig-
ure 12 we show the results for the meta-adaptive index as
well as the three adaptive indexes standard cracking, stochastic
cracking, and hybrid crack sort. As we can see, the meta-
adaptive index behaves very well under the uniform key distri-
bution in Figure 12(a). This holds for both the manual as well
as the automatic configuration. The automatic configuration
is slightly better for all workloads except of PERIODIC.
Apparently, the higher initial fan-out using bfirst = 12 bits
is a better choice in terms of accumulated query response
time. We can also see that tadapt is configured significantly
larger by simulated annealing, which basically causes using
the maximum fan-out bits bmax = 5 for the next access.
Therefore, simulated annealing identified fast convergence as
the way to optimize for accumulated query response time.
With respect to the baselines, we can also see that the meta-
adaptive index performs well under all patterns. It is not prone
to the workload like DC and HCS. Let us now look at the
normal distribution in Figure 12(b). Again, the meta-adaptive
index wins under all patterns clearly. The difference between
manual and automatic configuration is very small, as simulated
annealing produced a configuration that is similar to the
manual one. Again, DC and HCS fail to handle the sequential
query patterns. DD1R, which introduces a random crack per
query, is pretty much resistant to the query patterns. However,
it is still around twice as slow as the meta-adaptive index. Fi-
nally, let us inspect the Zipf distribution in Figure 12(c). Here,
we can see the largest difference between the manual and the
automatic configuration, where the latter one is significantly
faster. Interestingly, the simulated annealing sets bfirst only
to 5 bits, leading to a small initial fan-out of 32 partitions. This
makes sense in the presence of heavy skew. It is wasted effort
to partition using a higher number of partitions if basically all
entries end up in the first one. Thus, it is more efficient to use
a smaller fan-out and then to recursively reorganize the first
overly full partition again. We can also see that DD1R is still
the closest competitor over all patterns. Still, no method is as
robust and fast as our meta-adaptive index. Before concluding,
let us investigate the scaling capabilities of our approach.
Table III shows the runtime when varying the dataset size and
the factor of slowdown with respect to a size of 100M under
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Fig. 12: Accumulated query response times of the meta-
adaptive index both manually configured (Section VIII-C1)
as well automatically configured using simulated annealing
(Section VIII-D1) under uniform (12(a)), normal (12(b)),
and Zipf-based (12(c)) key distributions and different query
workloads (see Section VIII-A).

the random uniform workload. As we can see, our approach
scales linearly with respect to the datasize.

TABLE III: Scaling of the Meta-adaptive Index (manually
configured) under uniform random workload.

Size 25M 50M 100M 200M 300M 400M 500M

Runtime 1.17s 2.39s 4.77s 9.63s 14.37s 19.82s 24.47s
Scaling 0.24x 0.50x 1x 2.01x 3.01x 4.15x 5.13x

IX. CONCLUSION

Our initial goal of the meta-adaptive index was to develop
a technique which can fulfill several of the core needs of
adaptive indexing at once. Firstly, we wanted to unify the large
amount of specialized adaptive indexes that aim at improving
a specific problem at a time in a single general method. We
achieved this by identifying the fact that partitioning is at the
core of any adaptive indexing algorithm. We proposed a meta-
adaptive index that can emulate a large set of specialized in-
dexes, which we were able to show by inspecting the indexing
signatures. Based on this, we secondly looked at how the meta-
adaptive index compares with respect to the classical adaptive
indexing baselines and showed its superior performance under
18 different workloads with an average speedup of around 2x
over the best baseline. Thirdly, we looked at how to manually
and automatically configure the meta-adaptive index. Using
simulated annealing, we were able to push the performance
of the meta-adaptive index to the limits. Overall, the meta-
adaptive index serves as a valid alternative for a large number
of specialized indexes and is able to improve in terms of
robustness, runtime, and convergence speed over the state-of-
the-art methods.
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