### Properties of Perfect Computer Memory



unlimited capacity

instant random access

unlimited bandwidth for sequential access

for free

persistent, always, for ever



## Typical Access Times



### Relative Distances!

Factor 45

Factor 15

ш

"L1 cache is like grabbing a piece of paper from your desk (2 second),

L2 cache is picking up a book from a nearby shelf (5 seconds),

L3 cache is picking up a book from the next room (30 seconds),

DRAM is taking a walk down the hall to buy a Twix bar (90 seconds)."







"hard disk is like walking from Saarland to Hawaii."

7,500,000 seconds of walking!

= 86.8 days!



# Typical Sizes





Zoom out:

L1

L2

L3

DRAM

### Tasks of **Each** Level

localization of data objects
caching of data from lower level: inclusion (usually)
data replacement strategies
writing modified data (write through vs write back)



### Tasks of **Each** Level

localization of data objects

caching of data from lower level: inclusion (usually)

data replacement strategies

writing modified data (write through vs write back)

This leads to The All Levels are Equal Pattern.

## Credits and Copyrights

© iStock.com:

voyager624

CC:

BY-SA Thomas Tunsch / Hula0081110.jpg (Wikimedia Commons) http://de.wikipedia.org/w/index.php?title=Datei:Hula0081110.jpg&filetimestamp=20070305150205 http://creativecommons.org/licenses/by-sa/3.0/deed.de

as well as public domain

Twix analogy inspired from:

http://duartes.org/gustavo/blog/post/what-your-computer-does-while-you-wait

[retrieved Nov 8, 2013]

yet: I extended the analogy a bit

Cache latency numbers are based on this article:

Performance Analysis Guide for Intel® CoreTM i7 Processor and Intel® XeonTM 5500 processors By Dr David Levinthal PhD. Version 1.0

http://software.intel.com/sites/products/collateral/hpc/vtune/performance\_analysis\_guide.pdf [retrieved Nov 8, 2013]