Ein Lied geht um die Welt... - Medienübertragung im Internet

Lehrstuhl Nachrichtentechnik Intel Visual Computing Institute

Prof. Dr.-Ing. Thorsten Herfet herfet@cs.uni-saarland.de

A few "facts", June 2010¹

- The sum of all forms of video (TV, video on demand, Internet, and P2P) will continue to exceed 91 percent of global consumer traffic by 2014.
 - Internet video alone will account for 57 percent of all consumer Internet traffic in 2014.
- Advanced Internet video (3D and HD) will increase 23-fold between 2009 and 2014.
 - By 2014, 3D and HD Internet video will comprise 46 percent of consumer
 Internet video traffic.
- Real-time video is growing in importance.
 - By 2014, Internet TV will be over 8 percent of consumer Internet traffic, and ambient video will be an additional 5 percent of consumer Internet traffic.

http://www.cisco.com/en/US/solutions/collateral/ns341/ns525/ns537/ns705/ns827/VNI Hyperconnectivity WP.pdf

But what does video traffic need?

- Media applications are different than data!
 - They don't need full, but only predictable reliability
 - Loss tolerance determined by use case and AV-codec
 - They require a predictable, upper bounded delay
 - Determined by usage scenario (interactive, communicative etc.)
- Delay and loss tolerance are application specific
 - Interactive apps need N × 10 ms, broadcast apps n × 100 ms and NVOD etc. N × 100 ms
 - Very efficient codecs need 10⁻⁶, very robust ones 10⁻²
- Media Transport needs to be adaptiv
 - Due to low coherence time very dynamic ($n \times 100 \text{ ms}$)

Let's get more detailed

- Media Transmission requires (ITU-T Y.1541)
 - Predictable Delay
 - Application dependent
 - Predictable Reliability
 - Application dependent
- Coding delay essential
 - FEC determined by packet arrival
 - ARQ determined by round trip time

Class	IPTD	IPDV	IPLR	IPER	IPRR	Applications (examples)
0	100 ms	50 ms	1×10 ⁻³	1×10 ⁻⁴	ı	Real-time, jitter sensitive, low delay, highly interactive
1	400 ms	50 ms	1×10 ⁻³	1×10 ⁻⁴	-	Real-time, jitter sensitive, medium delay, interactive
2	100 ms	U	1×10 ⁻³	1×10 ⁻⁴	-	Transaction data, low delay, highly interactive
3	400 ms	U	1×10-3	1×10 ⁻⁴	-	Transaction data, medium delay, interactive
4	1 s	U	1×10 ⁻³	1×10-4	-	Low loss
5	U	U	U	U	-	Best effort
6	100 ms	50 ms	1×10-5	1×10 ⁻⁶	1×10 ⁻⁶	High bit rate, strictly low loss, low delay, highly interactive
7	400 ms	50 ms	1×10 ⁻⁵	1×10 ⁻⁶	1×10 ⁻⁶	High bit rate, strictly low loss, medium delay, interactive

Notes - U: undefined

IPTD: IP Packet Transfer Delay IPDV: IP Packet Delay Variation IPLR: IP Packet Loss Rate IPER: IP Packet Error Ratio

IPRR: IP Packet Reordering Ratio

Everything over IP

- IP makes things worse:
 - Not "noisy" (AWGN) but "lossy" (E[rasure]) channel
 - Complete IP packets get lost due to contention and/or queuing
 - IP packet rate low even for high rate signals:
 - 4 Mbps SD video has ~2.5 ms IP packet rate (assumed 7 MPEG-2 TS packet per IP packet; see later)
 - Small blocks already consume time budget (40 packets / 100 ms)
- Channel capacity has to be revisited
 - Capacity under delay constraints
 - Time dependent minimum redundancy
 - Residual error rate tolerable

The system

Internet Transport and Coding for 3D-HDTV

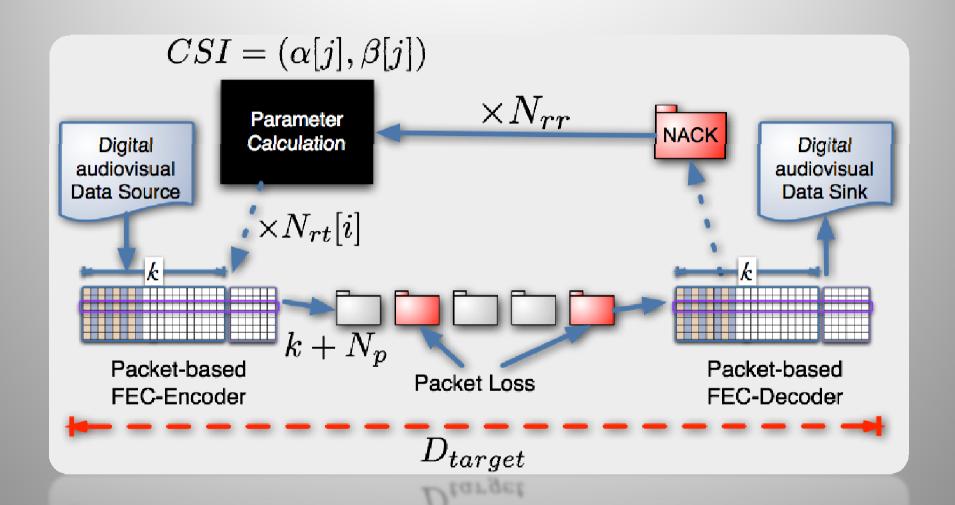
Error Correction: "State of the Art"

- HTTP/TCP
 - Pure ARQ
 - Exhaustive, adaptive error correction
 - Unlimited retransmissions, unlimited delay
 - ARQ (Automatic Repeat Request)

- UDP/RTP(/MPEG-2 TS)
 - No error correction
 - Optional profile with FEC or retransmission
 - Multicast support

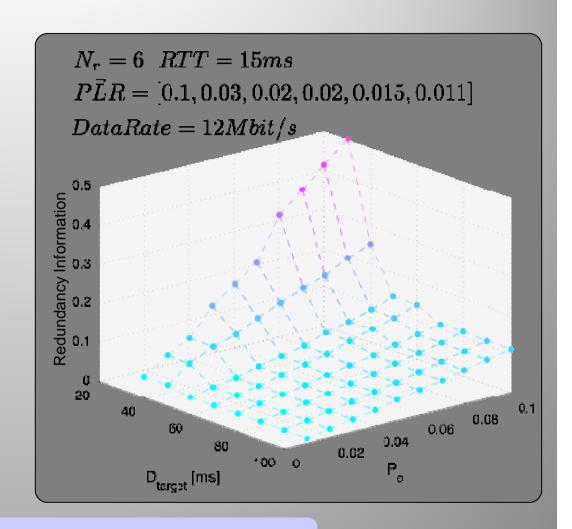
FEC (Forward Error Correction)

Up to now: Either ARQ or FEC. Require loss-tolerant, scalable real-time transmission which combines the advantages of ARQ and FEC.



Hybrid Error Correction

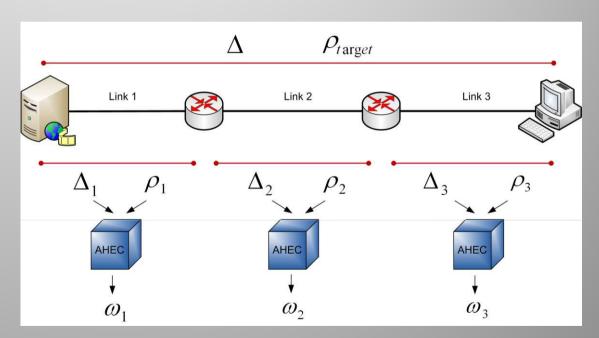
Adaptive Hybrid Error Correction



Time vs. Redundancy

- Common Principle for capacity approaching codes:
 - "Make codes as long as possible" (if decoding complexity allows it)
 - Contradicts the delay constraint
- Short delays require optimal erasure codes
 - Better scalability for short code sequences
 - Trade-off between time and redundancy

"Time as new dimension in Shannon's Theorem"



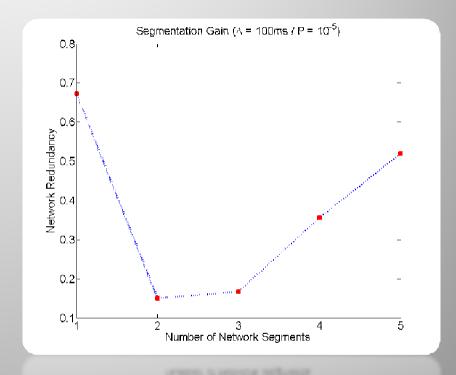
Multi-Hop Error Correction

- Multi-Link / Multi-Hop
 - uses individual segment properties
 - intermediate nodes act as error correction relay
 - apply AHEC as atomic unit
 - expect significant coding gain

Error Correction in "Overlay Mode"

Saturation

• Remember:

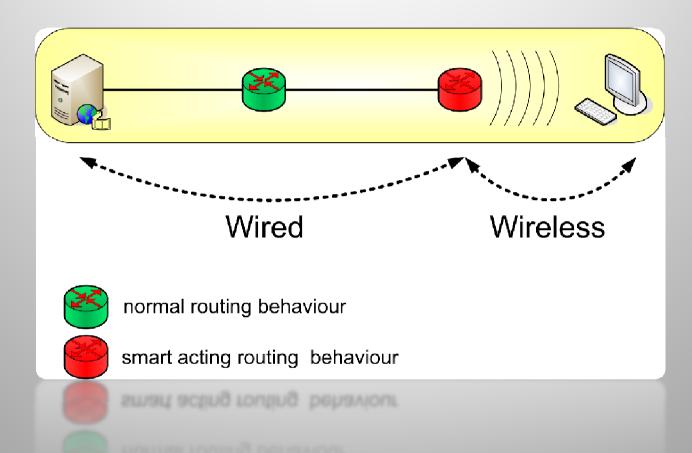

- Time per link decreases
- Efficiency per link decreases

Consequence:

- Optimal *number* of links
- Optimal grouping of links

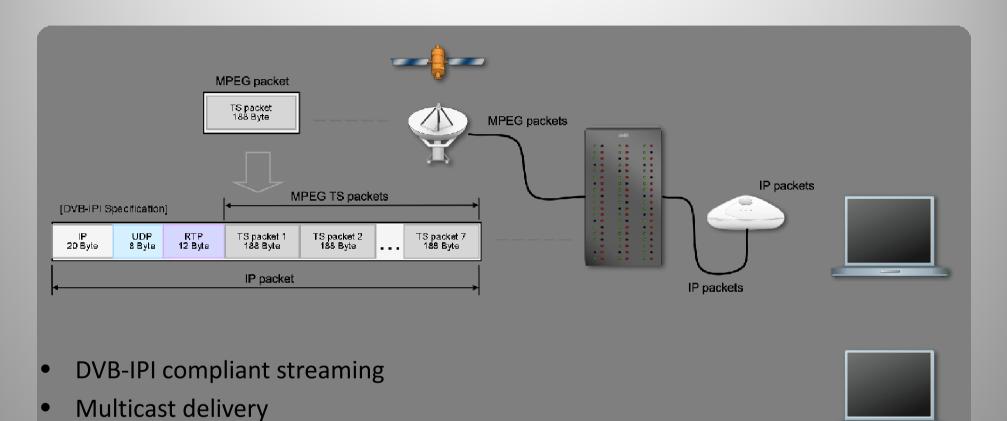
Good news:

- E2E gain always possible
- Efficiency can be increased in an avolutionary way



Example

• Use wired and wireless segments with independent transport schemes to obtain optimum efficiency.



IP-based wireless TV delivery

- PCR-based synchronization of end devices
- A/V multiplexing on Elementary Stream level



And now we're going 3D

- Provisioning of two separate streams
 - 2D-HD-IPTV for large multicast group
 - 3D add-on for client-side choice

- Genlocking (DPLL's), VA-API-Decode, OpenGL Rendering

3D-IPTV Browser Integration

HTML 5 provides integrated elements for 2D video content

<video src="movie.ogg" controls="controls"></video>

- Intended to become new standard for video playback
- Enables integration of different codecs within the browser source
 - No need for (buggy) 3rd party plugins
 - But: no standard available yet, vendors choose supported codecs individually:
 - Firefox: Theora codec
 - Safari: MPEG-4
 - Chrome: Theora + MPEG-4
 - Internet Explorer: tbd
- Currently, no build-in support for 3D video material

3D-IPTV Browser Integration

Summary

- 3D & HD will make up 46% of Internet traffic in 2014
 - Transport must be as efficient as possible!!!
- Introduced new transport based on PRPD
 - Adaptive to channel variations, optimized efficiency
 - Applicable end-2-end or multihop
- 3D will be a 2D "enhancement"
 - Optimize 2D and 3D multicast, so sum will also be optimal

